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This article presents theoretical methods for the description of the directional effect of reactant rotation on
the reactivity of atom-diatom systems and suggests an experiment that could be used to test theoretical
predictions. The theory can be used in conjunction with both quantum reactive scattering and quasiclassical
trajectory calculations, and is stated in general terms, which allows it to deal with arbitrary reactant polarizations.
The illustrative results obtained for the benchmark H+ D2 reaction are also presented and show that under
experimentally achievable conditions one can largely control reactive cross sections and product state
distributions, while at the same time gaining valuable and at times surprising information on the reaction
mechanism.

1. Introduction

Two of the most persistent goals of scientific investigations
of the dynamics of molecular collisions are understanding and
control.1,2 On one hand, collision dynamicists strive for a
detailed understanding of collision mechanisms and of the role
of energetic and directional factors in scattering events.3-5 On
the other hand, they attempt to devise techniques for the control
of molecular collisions and, in particular, for the selection of
desired collision outcomes.6-8 Naturally, the two endeavors go
hand in hand. The understanding of collision mechanisms
facilitates the development of control schemes, whereas analysis
of the dynamics of controlled collisions can offer important clues
about collision mechanisms.

The subject matter of this article is related to both issues.
We consider here the role of reactant polarization in the
dynamics of reactive collisions and present theoretical methods
that can be useful (i) for the analysis of the dependence of
reaction mechanisms on reactant polarization and (ii) for the
selection of optimum reactant polarization schemes for the
control of reaction probabilities and product state distributions.
To encourage experimental approaches to the problem, we also
describe what we consider to be a challenging yet feasible
experiment capable of probing the phenomena we address
theoretically and include, among other illustrative results,

theoretical predictions for possible outcomes of the proposed
experiment.

From a purely theoretical point of view, there is no significant
difference between reactants and products polarization. What
matters in either case is whether the reaction probability changes
when the collision partners are polarized, in other words,
whether the reaction dynamics privileges certain relative mo-
lecular orientations or relative directions of motion. (For articles
discussing this and many other aspects of the dependence of
reaction dynamics on spatial directions, see the special editions
of journals dedicated to the biennial stereodynamics conferences,
refs 9-16.)

From a practical point of view, however, there are differences.
An important one is that reactant polarization is determined by
external intervention (laboratory preparation of polarized reac-
tants), whereas product polarization is determined by the reaction
itself. In particular, this means that in practice one cannot fully
control the polarization of the reactants with regard to the (body-
fixed) collision reference frame.

Another important difference is that common intuition and
practical applications generally introduce a bias in the way one
regards a chemical reaction: although the state of reactants is
seen as a factor that causes the dynamics to unfold the way it
does, the formation of products in a particular state is seen as
but a consequence of it. It is as if reactants existed a priori and
products only a posteriori, even when the application under
consideration actually involves a time-independent process. This
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makes reactant preparation a much more obvious choice for
the control of reaction probabilities than product selection. (Here
we are talking about control in the passive sense: external
intervention is restricted to the asymptotic conditions of the
reactive system. In active control schemes, the external interven-
tion is not restricted in this way.)

Studies of reactant polarization must therefore deal with this
dichotomy. The theory is most powerful when the collision is
examined from a body-fixed perspective and does not require
formal distinctions between reactants and products. Practical
applications, however, are at least partially restricted to space-
fixed points of view and do introduce distinctions between
reactants and products. Instead of developing separate methods
appropriate for particular cases, it is convenient to obtain a
general method that allows for transformations from general
situations to particular cases. This is precisely the approach we
have used.

As already mentioned, our main interest here is in the role
of reactant polarization in the dynamics of reactive collisions.
For the sake of objectivity, our presentation and examples are
adapted to this situation. Other situations in which one is
interested, say, in both reactant and product polarization, or else
in nonreactive as well as reactive collisions, can be dealt with
by generalized versions of the methodology presented here.

We present two versions of our method: one classical,
appropriate for use in conjunction with quasiclassical trajectory
(QCT) calculations, the other quantum mechanical, appropriate
for use in conjunction with quantum scattering calculations. In
either case, we also consider the procedures (transformations
between laboratory and collision reference frames) necessary
for the analysis of actual reactant polarization experiments.
Illustrative examples, in which we consider the H+ D2(V ) 0,
j ) 2) reaction and possible experiments involving D2 alignment,
are also presented.

The quantum and classical theoretical methods presented here
are modified and extended versions of the quantum17,18 and
classical18,19 methods we have used before for the description
of polarization effects in the dynamics of atom-diatom reac-
tions, which in turn were strongly based on previous vector
correlation theories.20-30 We have stated the quantum and
classical theories using analogous formalisms and have revised
or extended some of the definitions used in the past in order to
maximize the chemical insight that can be gained by analysis
of the calculable (and observable) quantities and in order to
facilitate the comparison between (possibly experimental)
quantum and classical results.

The reason for the selection of an example involving reactant
alignment at aj ) 2 rotational level (as opposed to a more
general polarization state, also involving the orientation or
coherent superposition of states with different rotational quantum
numbers) is our belief in the feasibility of experiments of this
type involving reactions amenable to accurate theoretical
treatment. Indeed, one such experiment has already been
performed by Zare and co-workers at Stanford University.19

They have measured HD alignment effects in the dynamics of
the Cl + HD(V ) 1, j ) 2) reaction using stimulated Raman
pumping (SRP) to prepare HD(V ) 1, j ) 2, m ) 0) molecules
(quantization axis along the laser polarization directionE) by
pumping of theS(0) transition with parallel laser polarization.
This corresponds to negative alignment of the rotational angular
momentum vector (j preferentially perpendicular toE), and to
positive alignment of the HD internuclear axis (r preferentially
parallel/antiparallel toE). The use of different experimental
geometries has enabled them to obtain experimental values for

the HD alignment moments, and this provided important clues
for the analysis of the reaction dynamics, which was also done
by considering theoretical results from QCT and quantum
scattering calculations19 on the G3 potential energy surface.31

Alignment effects were found to be important, with close-to-
collinear collisions enhancing reactivity.

We would also like to note that, although the fact that the
mutual orientation of reagent molecules influences chemical
reactions is rather obvious, much remains to be done if we are
to thoroughly understand how exactly and to what extent that
is so. Indeed, it is often the case that detailed studies of the
stereodynamics of molecular collisions lead to surprising,
counterintuitive results. Examples are abundant (see, for in-
stance, refs 9-16), but a particularly striking one is provided
by the Li + HF system. Quantum theoretical studies32,33of this
reaction at zero total angular momentum and with HF in its
ground vibrational state have indicated that formation of the
LiF product is favored not only when the Li atom attacks the F
end of HF, as one would intuitively expect, but also (and perhaps
more strongly) when the Li atom attacks the H end of HF, an
effect that had also been suggested by early QCT calculations.34

Experimental studies of the same reaction by Loesch and co-
workers,35,36 this time involving HF(V ) 1) molecules, have
confirmed steric effects to be important, but in a rather different
manner. The detailed analysis of their data was carried out in
the light of wave-packet37 and QCT38 calculations, and the
theoretical studies have lead to the conclusion that steric effects
are actually quite unimportant for the integral reaction cross
section summed over product states but much more significant
for differential properties and for the product state distribution,
with formation of LiF in itsV′ ) 0 or V′ ) 3 vibrational states
being favored, respectively, by head-on or side-on Li+ HF
collisions.38

Detailed stereodynamical studies are therefore important to
solidify our understanding of the mechanisms of chemical
reactions, and can also point out if and to what extent the
selection of reactant states can be used to manipulate reaction
probabilities and product state distributions. This paper discusses
theoretical and experimental methods that have the potential to
be useful in that regard, along with illustrative examples.

The article is organized as follows. The presentation of the
theory starts in Section 2 with a description of the quantities
involved and their physical meanings, and is concluded in
Section 3 with an account of the mathematical and computa-
tional procedures necessary for actual calculations. This is
followed in Section 4 by the description of the reactant
polarization experiment we are proposing. Results that illustrate
how the theory can be used, and also what can be observed in
the proposed experiment, are presented in Section 5. Section 6
then closes the paper with a summary of our main results and
conclusions.

2. Overview of Theory

Every chemical reaction is a transformation. In the case of
atom-diatom reactions, it is usual to think about the transfor-
mation as being given by

where V, j, m and their primed counterparts are vibrational,
rotational and magnetic quantum numbers,θ is the scattering
angle (the angle betweenk andk′, the reactant-approach and
product-recoil directions), andEcoll is the collision energy. In
detailed stereodynamical studies, however, it is convenient to

A + BC(V, j, m)98
Ecoll,θ

AB(V′, j′, m′) + C (1)
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think about the chemical reaction as being described by the
process

wherek, q, and their primed counterparts are labels associated
with the rotational polarization moments that characterize the
relative directions of motion of reactants and products.17-30

Because our interest here lies in reactant rather than product
polarization, the values of the product-polarization labels are
fixed at k′ ) q′ ) 0 (this means that products are considered
regardless of their polarization state), and hereafter not explicitly
mentioned. Note also that we have ignored electronic and
nuclear spins, which means that the methods and results to be
presented below will be valid only when the BC reactant is a
closed-shell molecule not susceptible to fast hyperfine depolar-
ization.22-24,39-45

There are four main reasons for the replacement of magnetic
quantum numbers by polarization moments. Two are technical,
and the other two are practical. The first technical reason is
that the mathematical description of the dependence of reaction
dynamics on spatial directions requires the extensive use of
angular momentum algebra, which is made easier by the
introduction of polarization moments.23,27Very loosely speaking,
this has to do with the fact that polarization moments are always
explicitly related to all three spatial directions comprising the
xyz reference frame, whereas magnetic quantum numbers are
explicitly related to only one spatial direction (the quantization
axis,z). The second technical reason is that, because classical
mechanics cannot deal with phases of angular momentum states,
it is not possible to formulate a complete quasiclassical theory
of reaction stereodynamics in terms of magnetic quantum
numbers; if one wants to maximize the benefit from direct
comparisons of quantum and quasiclassical results, the two
theories must be stated in similar terms. The first practical reason
is that polarization moments relate to the results from experi-
ments regarding chemical stereodynamics more directly than
populations and phases of magnetic states. The second practical
reason is that, to some extent, polarization moments describe
directional effects in more intuitive terms (orientation and
alignment of molecular axes and rotational angular mo-
menta18,20,22,24,46,47) than magnetic quantum numbers. This is the
case at least for the first few orientation or alignment moments,
which at present are the ones attracting more attention.

The theory we present here is based on what we call
“extrinsic” and “intrinsic” polarization moments. Extrinsic
polarization moments describe actual reactant preparation
schemes and quantify the anisotropies of the rotational angular
momentum and molecular axis distributions in the asymptotic
region where reactants do not yet interact. Extrinsic polarization
moments are a consequence of external circumstances (the
experimental setup) rather than the reaction itself; they have
nothing to do with the collision dynamics. We might as well
call them “prepared” polarization moments.

In contrast, intrinsic polarization moments describe the
reactive process itself. They quantify the dependence of the
reaction cross section on the anisotropies of the rotational
angular momentum and molecular axis distributions of the
reactants. Intrinsic polarization moments are determined by the
collision dynamics rather than by external circumstances (the
experimental setup). We might as well call them “dynamical”
polarization moments.

The distinction between intrinsic and extrinsic properties can
be made clearer by consideration of a more familiar example:

the scattering (S) matrix obtained in reactive scattering calcula-
tions. In the terms used in this article, theSmatrix is an intrinsic
quantity because it describes the connections (rigorously speak-
ing, transition probability amplitudes) tying reactants to products
rather than the reactants state considered in a particular study.
The S matrix does not depend on whether one is interested in
reactions involving rotationally excited reactants or not. Of
course, the values of observable properties (say, integral cross
sections) cannot be calculated unless the reactants state (the
extrinsic property) is determined. But the dynamical information
is in the intrinsic property (the scattering matrix), not in the
extrinsic one (the reactants state).

Metaphorically speaking, one might say that intrinsic proper-
ties express what the reaction wants, whereas extrinsic properties
express what the reaction gets. Reaction cross sections depend
on both.

2.1. Reference Frames.Unless otherwise stated, all of the
results below are referred to a center-of-massxyzframe in which
thez axis is parallel to the reactant-approach direction,k, xz is
the scattering plane containing bothk and the product-recoil
direction,k′, and they axis is parallel tok × k′. We shall refer
to this xyzsystem of axes as the “scattering frame,” and use a
lowercaseq to represent the polarization moment components
defined with respect to the scattering frame and lowercaseθj

andæj to represent the polar and azimuthal angles that describe
the direction of the reactant diatomic rotational angular mo-
mentum vector,j , in the scattering frame. Similarly, the direction
of the reactant diatomic internuclear axis in this frame will be
given byθr andær.

When dealing with possible experimental situations, we will
also need to consider anXYZ“laboratory frame,” whose origin
coincides with the scattering frame but whose spatial orientation
is fixed; its explicit definition will be presented in Section 4.
We shall use an uppercaseQ to represent the polarization
moment components defined with respect to the laboratory
frame and uppercaseΘj and Φj to represent the polar and
azimuthal angles that describe the direction of the rotational
angular momentum vector,j , in the laboratory frame.

We choose to represent the relationship between the two
frames in terms of the rotation that takesxyzinto XYZ(not the
rotation that takesXYZinto xyz) and represent the Euler angles
that define this rotation byR, â, andγ. It follows thatâ andR
are the polar and azimuthal angles that describe the orientation
of Z in the scattering frame.

2.2. Intrinsic Reactants PDDCS. The most important
quantities for our reactant polarization analysis method are the
intrinsic polarization moments we represent bySq

(k)(θ) and
Sq(

{k}(θ). They are, respectively, complex and real versions of
the same thing, mutually related by

These polarization moments quantify the dependence of the
differential cross section (DCS) on the polarization of the

Sq+
{k}(θ) ) 1

x2
[(-1)q Sq

(k)(θ) + S-q
(k) (θ)]

) (-1)qx2 Re[Sq
(k)(θ)], 1 e q e k

(3a)

Sq-
{k}(θ) ) 1

ix2
[(-1)q Sq

(k)(θ) - S-q
(k) (θ)]

) (-1)qx2 Im[Sq
(k)(θ)], 1 e q e k

(3b)

S0
{k}(θ) ) S0

(k)(θ) (3c)

A + BC(V, j, k, q)98
Ecoll,θ

AB(V′, j′, k′, q′) + C (2)
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reactants. Maintaining a term already in use,18 we call them
the “intrinsic reactants PDDCSs,” where the acronym stands
for “polarization-dependent differential cross section”.

Complex polarization moments are best for mathematical
manipulations but are not directly associated with Cartesian
directions50 or observable differential cross sections (the cor-
responding operators are not Hermitian). Real polarization
moments are cumbersome for mathematical manipulations but
are directly associated with Cartesian directions and observable
differential cross sections (the corresponding operators are
Hermitian). We therefore use this approach: derivations and
calculations are done with complex polarization moments, but
numerical results and figures are presented in terms of real
polarization moments.

As already mentioned, the labelsk andq identify particular
rotational polarization moments of the reactants. The rankk
identifies the particular type of multipole under consideration:
k ) 0 for a monopole,k ) 1 for a dipole,k ) 2 for a quadrupole,
and so on up tok ) 2j. The componentq identifies the spatial
direction(s) associated with each multipole. Each intrinsic
reactants PDDCS,Sq

(k)(θ), quantifies the dependence of the
differential cross section on a particular type of reactants
polarization; the details of the particular directions and types
of polarization associated with each combination ofk and q
values whenk e 2 can be found in ref 18.

For future reference, we also note that the complex polariza-
tion moments satisfy the following relation:

If, in addition, the distribution of internuclear axis is invariant
to reflection in thexz scattering plane, as in atom-diatom
collisions, it holds that

which in combination with eq 3 implies that the only nonvan-
ishing real polarization moments are

We close this Section by stressing that the intrinsic reaction
PDDCS is an intrinsic property that gives information about
the reaction dynamics. Its numerical value cannot be directly
measured. To obtain numbers that can be measured (i.e.,
observable reaction properties), one must take into account an
extrinsic property: the actual polarization of the reactants, which
we will consider before showing how observable differential
cross sections can be calculated.

2.3. Polarization of Reactants.When the directions of the
angular momenta are prepared prior to the collision, one must
consider the actual polarization of the reactants. This is an
extrinsic property: instead of depending on the reaction
dynamics, it depends on external intervention.

The polarization of the BC reactant in reaction 2 is described
by a set of polarization moments that we denote byaq

(k) or aq(
{k}

when using the complex or real representations. Because these
polarization moments are to be used in conjunction with intrinsic
properties such as the one discussed in the previous section,
the two must be defined with respect to the same reference
frame.

Suppose that (as is done in this paper) one wants to study
the reaction dynamics in thexyzscattering frame and that all
intrinsic properties are referred toxyz. If reactants are produced
in the laboratory with complex polarization moments,AQ

(k),
referred to theXYZspace-fixed frame, then a frame transforma-
tion is required: one must use the values of the laboratory
polarization moments,AQ

(k), to determine the values of the
scattering-frame polarization moments,aq

(k). The formula for
this transformation is

whereDk(R, â, γ) is a Wigner rotation matrix andR, â, andγ
are the Euler angles associated with the rotations that take the
xyzscattering frame into theXYZlaboratory frame (see Section
2.1). As is always the case in angular momentum algebra, one
must be careful with the conventions and definitions used.
Equation 7 is valid when (i) the rotation matrix follows the
conventions of ref 50 and (ii) the complex polarization moments
are defined as covariant components of the polarization tensor
(this is the definition we use throughout this work, see Section
3).

Real polarization moments can be obtained from their
complex counterparts by the use of expressions entirely
analogous to those in eq 3.

2.4. Observable DCS.Once the intrinsic reactants PDDCSs
and the (extrinsic) reactants polarization moments have been
calculated, one must combine them in order to obtain the
observable differential cross section. The formula required is

where dσ/dω is the DCS, andσiso the integral cross section of
the reaction involving unpolarized reactants, in other words, the
reaction in which the spatial distributions of the rotational
angular momentum and internuclear axis of the BC reactant
are isotropic.

2.5. Meaning of Intrinsic Reactants PDDCSs.To further
clarify the information content of eq 8, let us consider the
particular case of unpolarized reactants. In this case, the extrinsic
reactant polarization moments are given by

and we have

That is, the intrinsic reactants PDDCS,S0
(0)(θ), gives the

product angular distribution of the reaction involving unpolar-
ized reactants. In other words,S0

(0)(θ) gives the probability of
observing reaction when the angle between the reactant-approach
and product-recoil directions isθ. Note that in order to obtain
the integral cross section from eq 10, one must integrate it not
only over cosθ but also over the azimuthal angle,æ, hence the
need for the 2π factor.

What about the other intrinsic PDDCSs? Equation 8 shows
that eachSq

(k)(θ) quantifies the extent to which the corre-
sponding extrinsic reactant polarization moment,aq

(k), leads to
a distortion of the differential cross section. Another important

[Sq
(k)(θ)]* ) (-1)q S-q

(k) (θ) (4)

Sq
(k)(θ) ) (-1)k+q S-q

(k) (θ) ) (-1)k[Sq
(k)(θ)]* (5)

k even: S0
(k) andSq+

{k}, 1 e q e k (6a)

k odd: Sq-
{k}, 1 e q e k (6b)

aq
(k) ) ∑

Q)-k

k

DqQ
k/ (R, â, γ) AQ

(k) (7)

dσ

dω
)

σiso

2π
∑
kq

(2k + 1)[Sq
(k)(θ)]*aq

(k) (8)

unpolarized reactants:aq
(k) ) δk0δq0 (9)

dσ
dω

)
σiso

2π
S0

(0)(θ) (10)
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observation is that, when PDDCSs withk > 0 are included,
probability is not conserved: in general

Extrinsic reactants polarization will, in general, lead not only
to a different shape for the differential cross section (i.e., to a
different product angular distribution) but also to a different
reaction probability and to a different integral cross section. The
intrinsic reactants PDDCSs quantify the reaction sensitivity to
both effects. In short, they quantify the intrinsic stereochemistry
of the reaction.

2.6. Renormalized PDDCSs.As just described, intrinsic
reactants PDDCSs allow us to calculate how product angular
distributions and reaction cross sections change with reactants
polarization. They do not, however, express this in relative
terms.

This point is better explained with an example. Suppose that
we calculate the value of a givenSq

(k)(θ), say S0
(2)(π/2), and

obtain 3.2. Does that mean that the alignment of the BC
rotational angular momentum along thez direction has a
dramatic effect on the reaction or only a minor one? As it turns
out, the value of the intrinsic PDDCS does not provide a direct
answer to this question. To answer it, we need renormalized
PDDCSs

The importance of renormalized PDDCSs comes from the fact
that they have well-defined ranges of allowed values.18 The
closer the calculated values are to the limits (positive or
negative) of the allowed ranges, the more sensitive the reaction
is to polarization effects. If renormalization of the PDDCS
mentioned above leads to a small value (say,S0

(2)(π/2)/S0
(0)(π/2)

) 0.02) we can say that the reaction is rather insensitive to this
kind of reactant polarization. But if the renormalization leads
to a large value (say we are doing a classical calculation and
obtain S0

(2)(π/2)/S0
(0)(π/2) ) 0.97, a value very close to 1, the

upper classical limit for thisk andq values18), then we can say
that the reaction is very sensitive to this kind of reactant
polarization. To give meaning to terms such as “large sensitiv-
ity,” we need to ask ourselves: large relative to what? That is
where the renormalized PDDCSs step in. The question they
address is this: relatiVe to the reactiVity associated with
unpolarized reactants, how large or small is the reactivity one
can get by polarizing them?

2.7. Intrinsic Reactants PP. To quantify the effect of
reactants polarization on the integral cross section, it is
convenient to introduce the polarization moments that we
represent bysq

(k) and, again, maintaining a term already in use,
call the “intrinsic reactants PPs” (the acronym stands for
“polarization parameter”). They are defined by

2.8. Observable ICSs.Once the intrinsic reactants PPs and
the (extrinsic) reactants polarization moments have been cal-
culated, one can combine them in order to obtain observable
integral cross sections. Before doing that, however, one must
note that the introduction of reactants polarization leads to two
different possibilities regarding the definition of integral cross
sections.

To understand this problem, one must start by realizing that
the correlation between thek andk′ vectors, as is always the
case for two-vector correlations,26 is a function of one angle
only: in this case, the scattering angle,θ. This leads to the
familiar result that DCSs of reactions involving unpolarized
reactants are always independent of the azimuthal angle,æ, and
that integration over this angle amounts to no more than
multiplication by a factor of 2π.

A complication arises, however, when one wants to consider
reactants polarization as well as the reactant-approach and
product-recoil directions. This amounts to consideration of the
j-k-k′ three-vector correlation, which depends on three
angles.26 There are two natural ways to choose the set of angles:

A. As {θ, θj, æj}. (Here θ is the angle betweenk and k′,
whereasθj is the angle betweenk and j , andæj is the dihedral
angle specifying the location of the plane containingk and j
with respect to the reference, scattering plane containingk and
k′.)

B. As {θj, θ, æ}. (θ andθj as above;æ is the dihedral angle
specifying the location of the scattering plane containingk and
k′ with respect to the reference plane containingk and j . Note
that the reference plane is not the same as in case A.)

Although both choices are possible, and mathematically
equivalent, practical issues introduce a clear bias in favor of
scheme A, which is indeed the one we have used so far: our
expression for the DCS, eq 8, is independent ofæ.

The question is less easily addressed, however, when one
wants to “reduce” the differential cross section describing the
j-k-k′ correlation to the integral cross section describing the
j-k correlation. This must be done by integration overθ and
æ. But what differential cross section must be integrated, the
one obtained with scheme A or the one obtained with scheme
B? The integration results are not equivalent.

The important point to note is that the DCS associated with
scheme A, the one of eq 8, does not depend onæ. Integration
over this angle amounts to a simple multiplication by 2π, and
does not remove the azimuthal dependence on the dihedral
angle,æj. However, the DCS associated with scheme B (its
mathematical expression is not included in this paper) does
depend onæ, which in this case is also the dihedral angle
associated with azimuthal asymmetry. Integration overæ
therefore does not amount to a simple multiplication by 2π,
and completely removes the azimuthal dependence.

Our answer to the question of which integration should be
performed is based again on practical issues, and is the
following: both, because the resulting integral cross sections
do not convey the same information and are both measurable.

Let us first deal with scheme A. Integration of eq 8 over cos
θ andæ yields

a quantity we will refer to as thespecialICS. The reason for
the “special” qualifier is that the value ofσ̃, contrary to the
value ofσ (the “ordinary” ICS to be discussed shortly), is not
completely independent of the product-recoil direction,k′. This
is because the determination ofσ̃, although not requiring
specification of the exact direction ofk′, does require specifica-
tion of the location of the scattering plane containingk andk′
because the dihedral angle associated with azimuthal asymmetry
is defined with respect to the scattering plane. Experimentally,
the special ICS can only be measured indirectly, by integration
of a (directly measurable) differential cross section. It cannot
be determined when product detection does not discriminate

∫-1

1
Sq

(k)(θ) d(cosθ) * 0 (11)

renormalized PDDCS:
Sq

(k)(θ)

S0
(0)(θ)

(12)

sq
(k) ) ∫-1

1
Sq

(k)(θ) d(cosθ) (13)

σ̃ ) σiso∑
kq

(2k + 1)[sq
(k)]*aq

(k) (14)
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recoil direction. Another noteworthy point is that the special
ICS does not express the “pure”j-k two-vector correlation
because determination of the value ofσ̃ requires specification
of two angles (θj andæj) rather than only one angle.

From the experimental point of view, the integral cross
sections associated with scheme B are the more natural ones
because they are truly independent of the product-recoil direc-
tion. They can be measured directly (by product detection
irrespective of recoil direction) because knowledge of the
position of the scattering plane is not necessary. The formula
required for their calculation is

(the complex conjugate symbol has been dropped because the
polarization moments withq ) 0 are real). Note that the
difference betweenσ and the special ICS of eq 14 is that
polarization moments withq * 0 do not contribute to the value
of σ; in other words,σ does not convey dihedral information.
The reason is that the loss of information about the location of
the scattering plane prevents one from creating azimuthally
asymmetric reactant polarizations and the information about the
sq

(k) with q * 0 is lost.
Note also that the above discussion uses arguments exclu-

sively drawn from the intrinsic distribution of angular momen-
tum. An alternative deduction can be made using the extrinsic
point of view. From this perspective, theæ azimuthal angle
defines the dihedral angle between thekk ′ (xz) scattering plane
and, in principle, any arbitrary, “external” reference plane. In
particular, it is possible to refer the scattering frame to the actual
XYZ laboratory frame because the properties calculated on the
former will depend on the relative orientation of both frames
as long as an extrinsic polarization exists. The dihedral angle
between thexz andXZ planes isR. Therefore,with respect to
the XYZ frame, the æ angle will be 2π - R.

Considering the relationship between the laboratory polariza-
tion moments and those in the scattering frame given by eq 7
and substituting in eq 8, the expression of the DCS becomes a
function of the Euler angles that relate the scattering and the
laboratory frame. By integration of eq 8 over cosθ andæ or R,
only those moments withq ) 0 survive. By using eq 7 again,
eq 15 is recovered.

2.9. Meaning of Intrinsic Reactants PPs.By using a
procedure analogous to the one in Section 2.5, we show that
we must have

and that the remaining intrinsic reactant PPs quantify the
sensitivity of the integral reaction cross sections to the extrinsic
reactant polarization.

We also note that in this case we do not need to define
“renormalized PPs” in order to obtain the kind of relative
information discussed in Section 2.6. As suggested by eq 16,
our definitions imply that the intrinsic reactants PPs are
“naturally renormalized” and therefore convey relative as well
as absolute information directly.

2.10. Stereodynamical Portraits.The PDDCSs and PPs we
have just introduced are the parameters that quantify the reaction
stereodynamics. Quantitative parameters, however, are not
always the best-suited ones, and certainly not the only ones that
matter, when what one is after is qualitative understanding.

The point we are trying to make can be explained with an
analogy. It involves a true story, in which the main characters

are the youngest of the authors of this paper (James Haigh) and
the author of some of the most influential papers in the field of
stereodynamics, Dudley Herschbach. James has never met
Professor Herschbach. While going through the mandatory
introductory stereodynamics literature, James was impressed by
Professor Herschbach’s seminal articles and also by the frequent
praise of his work in articles by other people. James got curious,
and asked co-workers what Professor Herschbach looks like.
Now we ask our readers: what would have been the best way
to answer? To present James with an exhaustive list of
anthropometric data (height, weight, etc.) or to show him a
portrait of Professor Herschbach? No prizes for guessing what
we did. Granted, an exhaustive list of anthropometric data might
have been more quantitative, but would not have been nearly
as effective as the portrait.

The situation is not too different with regard to chemical
reactions. Although PDDCSs and PPs are certainly the param-
eters one needs to consider for a quantitative description of the
reaction stereodynamics, a “portrait” of it conveys the overall
situation in a much more effective and direct manner. So the
question we have to address is this: how can one directly portray
the stereodynamics of a chemical reaction? The answer is, by
plotting the reaction’s intrinsic spatial distributions of inter-
nuclear axes and rotational angular momenta.

If the intrinsic polarization moments are known, then so are
the intrinsic spatial distributions of the rotational angular
momentum vectors and internuclear axes. Now,these are
distributions that explicitly describe and graphically represent
the dependence of the reaction dynamics on directions in space.
In our (admittedly fanciful) terms, these distributions are
portraits of the reaction stereodynamics, of which some
examples will be presented in Section 5.1.

Let us first consider internuclear axis (r ) distributions. They
are related to the polarization moments by51

whereP(θr, ær) is the probability density function (PDF) that
directly describes the spatial distribution of the internuclear axis,
θr andær are the spherical angles that specify the direction of
vectorr in the chosen reference frame,〈j0, k0|j0〉 are Clebsch-
Gordan coefficients, andCkq

/ (θr, ær) are complex conjugates of
modified spherical harmonics. Note that in this formula we have
used the intrinsic reactants PPs as the polarization moments,
but we might as well have used the PDDCSs, whether
renormalized or not.

Rotational angular momentum (j ) distributions, in turn, are
related to polarization moments by46,47

where theQ(θj, æj) notation indicates that the PDF we are
dealing with here is apopulation distributionrather than a
probability density function (see refs 46 and 47 for a discussion
of the need for this distinction). Again, we have used the intrinsic
reactants PPs as the polarization moments, but we might as well
have used PDDCSs, renormalized or not.

3. Calculation of PDDCS

In the previous section, we showed that the central quantities
in our theory are the intrinsic reactants PDDCSs. We have also

P(θr, ær) ) ∑
k)0

2j

∑
q)-k

k 2k + 1

4π
sq

(k)〈 j0, k0|j0〉Ckq
* (θr, ær) (17)

Q(θj, æj) ) ∑
k)0

2j

∑
q)-k

k 2k + 1

4π
sq

(k)〈 jj , k0|jj 〉Ckq
* (θj, æj) (18)

σ ) σiso∑
k

(2k + 1)s0
(k) a0

(k) (15)

s0
(0) ) 1 (16)

Reactants Polarization and Chemical Reactivity J. Phys. Chem. A, Vol. 109, No. 28, 20056205



shown how other important quantities (renormalized PDDCSs,
polarization parameters, cross sections, and stereodynamical
portraits) can be obtained once the PDDCSs are known. What
we have not yet described is how theSq

(k)(θ) values can
actually be calculated, and this is what this section is devoted
to.

The intrinsic reactants PDDCSs can be calculated with both
quantum and quasiclassical methods. Quantum calculations (we
assume them to be time-independent calculations or else time-
dependent calculations capable of producing scattering matrixes
as their output53-56) describe the reaction dynamics intrinsically;
the result of the calculation is a scattering matrix. This means
that intrinsic reaction properties can be obtained directly, without
recourse to extrinsic properties (which in this case would be
the density matrices defining actual states of reactants and
products).

As for quasiclassical trajectory (QCT) calculations, they are
carried out using a uniform distribution of the rotational angular
momentum or internuclear axis, without any polarization bias.
Of course, each individual trajectory is associated with given
initial and final polarization states, but the ensemble of
trajectories spans a uniform, isotropic distribution of directions.
It is the analysis of the subset of trajectories tying given initial
and final rovibrational states of reactants and products that
provides the information with respect to the intrinsic propensity
of a given initial distribution of angular momenta to produce a
particular final state.

In this section, we describe the calculations as we actually
did them and do not emphasize the similarities between the
quantum and quasiclassical descriptions; readers interested in
a presentation highlighting these similarities are referred to one
of our earlier papers, ref 18.

We also note that we are now about to enter a part of the
article that, although important for a rigorous justification of
our theory and also for actual calculations, is not essential for
an understanding of the kind of information one can obtain by
using it. Readers interested in the former are invited to read
on, but those with less demanding interests may wish to move
on to Section 4.

3.1. Classical Mechanics.The classical description of the
problem we are considering here (the three-vectorj-k-k′
correlation) starts with the definition of the classical probability
density functionPr(θ, θj, æj). This PDF (an intrinsic reaction
property) gives the probability of observing reactive scattering
from given reactants rovibrational states into given products
rovibrational states and at scattering angleθ when the initial
direction of the BC reactant rotational angular momentum is
the one associated with spherical anglesθj andæj. The classical
reaction PDF is dimensionless, normalized to unity

and as such can be expanded as a series of spherical harmon-
ics50,52 in the form

where theθ-dependent expansion coefficients are the intrinsic
reactants PDDCSs introduced in Section 2.2.

By using the orthogonality of the spherical harmonics to invert
eq 20, one gets the following expression:

The reaction differential cross section (which must take into
account an actual, extrinsic reactant preparation scheme as well
as the intrinsic reactants PDDCS) is given by

whereσiso is the integral cross section of the reaction involving
unpolarized reactants (which must be divided by 2π in order to
take into account the fact that the differential cross section is
independent ofæ), F(θj, æj) is the PDF describing the extrinsic
reactants polarization, and the 4π factor inside the integral
ensures its correct normalization.

The extrinsic reactants PDF can be expanded in a multipolar
series entirely similar to the one used for the intrinsic one, eq
20

where theaq
(k) values are the extrinsic reactant polarization

moments introduced in Section 2.3. Inserting eqs 20 and 23 in
eq 22, one obtains

where

Inserting this last equation in eq 24 finally gives us eq 8, the
expression for observable differential cross sections in terms
of the intrinsic reactants PDDCSs and the extrinsic reactants
polarization moments.

Now that the formal definitions have been presented, we turn
to actual numerical calculations. The procedure can be sum-
marized as follows. Each particular combination of reactant and
product rovibrational states is considered in turn, along with
the corresponding subset of trajectories. This subset contains
NVjV′j′ trajectories, labeled by the indexi. The values of the
scattering angleθ(i) and the polar and azimuthal angles that
define the direction ofj , θj

(i), andφj
(i), are determined for each

of the NVjV′j′ trajectories. This information is used to calculate
the values of all of the modified spherical harmonics of interest
for each trajectory, and then the trajectory-specific values are
averaged over theNVjV′j′ reactive trajectories.

In practice, this is done by expressing the PDDCSs as a series
of modified spherical harmonics18,52

where theskq
k1 coefficients are given by

∫-1

1 ∫0

2π ∫-1

1
Pr(θ, θj, æj) d(cosθj) dæj d(cosθ) ) 1 (19)
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Sq
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Sq
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The PPs are evaluated as18

As above, the brackets indicate the averaging over the whole
set of trajectories associated with the chosen rovibrational states
of reactants and products.

One more remark is needed before we conclude our presenta-
tion of the quasiclassical theory. Attentive readers may have
noticed that the PDFs used in eqs 20 and 23 do not have the
same form as the ones used for the generation of the stereo-
dynamical portraits showing the intrinsic spatial angular mo-
mentum distribution (eq 18). The former are infinite series
involving no Clebsch-Gordan coefficients; the latter is a finite
series involving Clebsch-Gordan coefficients. The reason is
this: eqs 20 and 23 are purely classical expressions used in a
classical calculation. Equation 18 is a quantum-mechanical
expression, used to turn the classical results into quasiclassical
ones by forcing onto them a quantum mechanical restriction
(in this case, a restriction of the extent to which the exact
direction of an angular momentum vector can be specified, see
refs 46 and 47). In a sense, this is analogous to the “boxing”
procedure used to associate specific quantum numbers to
molecules whose energy levels are not quantized in a classical
calculation.

3.2. Quantum Mechanics.The starting point of our deriva-
tion of the quantum mechanical expression for the reactants
intrinsic PDDCSs is a scattering matrix in the helicity repre-
sentation, the one most naturally adapted for the description of
the j-k-k′ vector correlation.17 Complete specification of a
particular element of this matrix requires a notation such as
Sa′V′j′Ω′,aVjΩ

EJM , with the various indices indicating the total energy
(E), total angular momentum (J), projection (M) of J on a space-
fixed axis,Z, and the arrangement, vibrational, rotational and
helicity quantum numbers for the reactants (a, V, j, andΩ) and
products (a′, V′, j′, andΩ′). Because theSmatrix elements are
independent ofM and the formulas used in this article only
require implicit use of the energy, arrangement, and vibrational
labels, we simplify the notation toSj′Ω′,jΩ

J .
Using this simplified notation, we can write the scattering

amplitude as57

where dΩ′Ω
J (θ) is a reduced rotation matrix andkin the wave-

number associated with the incoming (reactants) plane wave.
The differential cross section, allowing for an arbitrary

reactants polarization (and therefore arbitrary coherence between
the possible reactant helicities), is related to the scattering
amplitude by17

where〈jΩ1|F|jΩ2〉 is an element of the rotational-space density
matrix of the reactants.

Readers should note three points about this formula, namely,
(i) that we are disregarding product polarization and summing

the DCS over product helicities, (ii) that we are assuming the
reactants to be in a well-defined rotational energy level so that
the only coherences playing any polarization role are those
among different helicity substates, and (iii) that the DCS formula
mixes intrinsic properties (scattering amplitudes) and extrinsic
ones (reactants density matrix).

Using the expansion of the reactants density matrix that is
the quantum analogue18,46,47 of the classical expansion of eq
23, we get

Introducing this expression in eq 30, one obtains

where

Equation 32, although rather similar to the desired expression
for the DCS (eq 8), is not quite there yet; the quantities
represented here byUq

(k)(θ) are not the dimensionlessSq
(k)(θ)

values appearing in eq 8. To obtain that expression, we must
multiply the right-hand side of eq 32 by

where σiso, the integral cross section of the reaction for an
isotropic distribution of rotational angular momentum of the
reactants summed over product helicities, is given by

as the reader can check by integrating eq 30 over cosθ andæ
while using

This finally gets us to eq 8, which in the quantum case must be
used in conjunction with the following expression for the
intrinsic reactants PDDCSs

where the “scaled” scattering amplitudes are given by

The formulas above, besides completing the derivation of the
results necessary for the use of our theory in its quantum-
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mechanical version, justify our choice of notation for the
intrinsic reactants PDDCSs. These are obtained by nothing more
than a transformation of the scattering matrix, and one might
argue that they are no more than visualizable versions of theS
matrix that make the stereodynamical information explicit. We
would agree with that remark, and that is why we chose to
represent them bySq

(k)(θ).

4. A Possible Experiment

This section describes what we believe to be a challenging
yet feasible crossed-beam experiment that could be used to test
our theoretical predictions and more specifically those regarding
the role of D2 alignment in the dynamics of the H+ D2(V ) 0,
j ) 2) reaction.

In Section 5, we will show that theory predicts D2 alignment
to have a dramatic effect on the collision outcome and that this
effect will be clearly visible in differential cross sections, integral
cross sections, and product state distributions. Because the
experiment we propose can lead to the measurement of all of
these quantities, if successfully carried out it will be capable of
unambiguously demonstrating (or refuting) the rather striking
theoretical predictions.

In simple terms, the experiment consists of the following:
to place the molecules in the D2 beam in the|V ) 0, j ) 2, m
) 0〉 state, where the magnetic quantum number is determined
with regard to a laboratory-fixed quantization axis,Z, whose
direction can be chosen. This amounts to preparing D2(V ) 0,
j ) 2) molecules whose interatomic axis is aligned parallel/
antiparallel toZ and whose rotational angular momentum is
aligned perpendicular toZ, see Figure 1. (This corresponds to
positive axial alignment and negative rotational alignment. Note
also that thej distribution depicted in Figure 1 isexact, not
obtained with recourse to the vector model or some other
approximation; see refs 46 and 47 for an explanation.) By
varying the direction of the laboratory axis,Z, one varies its
direction with regard to the scattering-frame vector,k, and, if
the experiment involves angle-resolved product detection, also
with regard tok′ and therefore with regard to the scattering
plane (the plane containingk andk′). Given that the laboratory
axis,Z, is also the axis with regard to which the D2 molecules
are aligned, changing the direction ofZ with regard tok and
possibly k′ amounts to changing the D2 alignment in the
scattering frame, and this is the basic idea of the experiment.
Some of the technicalities are discussed further below, but first
we will briefly reconsider the problem of how to express the
laboratoryr and j distributions in the scattering frame.

The first thing to consider is that the axial and rotational D2

polarizations are both completely described by the molecular

polarization moments, which when referred to theXYZlabora-
tory frame we represent byAQ

(k) (see Section 2.1). In the case
considered here, the only nonvanishing moments are those with
k ) 0, 2, or 4 andQ ) 0, and they take the values

(As appropriate for an experiment, the values above are
quantum-mechanical. The corresponding classical values are
A0

(0) ) 1, A0
(2) ) -1/2, andA0

(4) ) 3/8.)
To obtain the extrinsic reactants polarization moments in the

xyzscattering frame, all one has to do is to use eq 7. It leads to

Note that because the distributions we are considering have
cylindrical symmetry aroundZ and therefore all nonvanishing
AQ

(k) moments haveQ ) 0, the Euler angleγ does not play any
role in the transformation and can be arbitrarily chosen. The
only Euler angles required areR andâ, the azimuthal and polar
angles that specify the direction of the laboratory axis,Z, in
the scattering frame. Figure 2, in which for reasons that will
soon become clear, we have identified the direction of the
laboratory axis,Z, as the direction of the electric field vector,
E, presents a graphical illustration of how the Euler angles are
defined and how the angles specifying the direction of the
alignment axis and the angular momentum vector are defined
in the scattering and laboratory frames.

The preparation of the|j ) 2, m ) 0〉 state can be achieved
by pure rotational Raman scattering by selecting the right pump
and Stokes laser frequencies for stimulated Raman scattering
in a cell of D2. By excitation via theS(0) transition from D2(V
) 0, j ) 0), a considerable population of D2(V ) 0, j ) 2, m )
0) can be produced quite effectively by setting the polarizations
of the stimulated Raman pump and Stokes lasers parallel to each
other. TheS(0) transition results in the largest D2 alignment
that does not depend on the line strengths. The procedure
proposed here is very similar to that used by Kandel et al.19 in
their study of the Cl+ HD(V ) 1, j ) 2) reaction. Sitz and
Farrow have used a similar procedure to produce aligned N2 in
the V ) 1 state.65

Associated with thej ) 2 rotational state of D2 are nuclear
states with total spinT ) 0 or T ) 2, which can in principle
lead to very strong hyperfine depolarization.22-24,39-45 This
effect, however, is not expected to be significant under the
experimental conditions considered here. The reason is that
collisions will occur within nanoseconds of reactant prepara-
tion but hyperfine depolarization will only occur in a micro-
seconds time scale. Justification of this claim requires

Figure 1. Spatial distributions of the interatomic axis,r , and the
rotational angular momentum,j , of a diatomic molecule in a|j ) 2, m
) 0〉 state referred to the laboratory frame,XYZ.

Figure 2. Scattering (xyz) and laboratory (XYZ) frames.
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consideration of the largest separation between D2(j ) 2)
hyperfine energy levels (185 kHz, see ref 66) and of the fact
that the time scale for hyperfine depolarization22,41,40can be no
shorter than the reciprocal of that value, that is, no shorter than
5 µs. This result is, of course, confirmed by detailed calcula-
tions.43

To minimize the presence of unpolarized D2(V ) 0, j ) 2) in
the beam, one can expand pureo-D2 through a nozzle cooled
to liquid nitrogen temperature. This is known to produce more
than 95% of D2 molecules in theV ) 0, j ) 0 state. Although,
at best, only 50% of the D2 molecules can be excited into|j )
2, m ) 0〉, the data acquisition can be done on a shot-to-shot
basis with the excitation laser on/off or varying the polarizations
of the pump and Stokes lasers to be either perpendicular or
parallel.

Ideally, the experiment will be carried out in a high-resolution
crossed molecular beam apparatus, similar to those used by
Welge and co-workers67 and by Yang and co-workers,68 with a
well-defined scattering plane. By varying the direction of the
polarization vector,E, with respect to the relative velocity vector
in â and the scattering plane inR, one can achieve different
reactant polarizations in thexyz frame. Results from time-of-
flight detection of the products at different laboratory scattering
angles can be transformed into the center-of-mass system to
obtain state-resolved differential cross sections and angle-recoil
velocity polar maps. Moreover, by integrating the triple DCS
(polar maps) in scattering angle and velocity, the special integral
cross section could be determined for each geometry with
different â andR angles.

We conclude this section by noting that the formulas
necessary for the theoretical calculation of the cross sections
that can be measured in this experiment are

These formulas are obtained by the insertion of eq 40 in eqs 8,
14, and 15, respectively. Note that, contrary to theσ̃ R

â special
ICS, theσ â ICS is independent ofR. The mathematical reason
for this is that the value ofCk0(â, R) is independent ofR; the
physical reason has been discussed in Section 2.8. Note also
that, because this experiment involves D2 alignment but not
orientation (the only nonvanishing extrinsic polarization mo-
ments are those withk even, see eq 39), one can restrict theâ
andR ranges to

and that theâ range can be further reduced to

when theR-dependence is averaged out.

5. Illustrative Examples

There are three ways in which one can use the theory
described in the previous sections. For reasons explained below,

we call them the “intrinsic,” “practical,” and “min-max”
approaches. Each of them has its own particular advantages,
and it is likely that stereodynamical analyses will be easiest
when all three are combined.

To illustrate the potential of each of those approaches, we
have obtained numerical results, both quantum and quasiclas-
sical, for the benchmark H+ D2 reaction. More specifically,
we have considered the

process at collision energies up toEcoll ) 1.7 eV. The dynamical
calculations, time-independent quantum reactive scattering and
quasiclassical trajectories, both run on the BKMP2 potential
energy surface,58 have been described in earlier articles, and
for this reason we do not repeat the descriptions here. Readers
interested in the details of the quantum or quasiclassical
calculations are advised to consult ref 59 for the former and
refs 18 and 60 for the latter.

Besides choosing a particular reaction, we have selected our
examples so that they highlight what can be achieved with the
possible experiment we have described in Section 4.

We must stress, however, that the main purpose of this
presentation is not to allow for a detailed analysis of the
experiment or even of the role of D2 polarization in reaction
46. Instead, our main purpose here is to provide illustrative
examples of the kind of chemical information one can obtain
by using the reactants polarization theory we have described.

5.1. The Intrinsic Approach: Insight and Understanding.
When one wants to focus on the reaction stereodynamics itself
rather than on a particular reactive process, the most natural
way to approach the problem is to use the intrinsic approach
described here. In the terms of the metaphor we have used in
the beginning of Section 2, in the intrinsic approach one
examines what the reaction wants rather than what it gets.

In the intrinsic approach, the extrinsic factor (the actual
polarization of reactants) is ignored altogether. The questions
one asks are these: what is the sensitivity of the reaction to
reactants polarization? What polarizations are preferred? How
anisotropic is the reaction dynamics? What is thecorrelation
between the reactants polarization and reactivity?

The main advantage of the intrinsic approach is that it leads
to clear pictures of the reaction mechanism itself, some of them
of a rather intuitive nature. These are the “stereodynamical
portraits” described in Section 2.10.

How does it work? The key idea has already been discussed
(Sections 2.5 and 2.9): the intrinsic reactants PDDCSs and PPs
quantify what the reaction wants. In less anthropomorphic terms,
they quantify the correlation between the reactants polarization
and the differential and integral reaction cross sections. Put in
yet another way, the intrinsic reactants PDDCSs and PPs are
the polarization moments of the reaction itself, rather than the
polarization moments of actually existing reactants. And if we
know these intrinsic polarization moments, then we can use them
to plot the corresponding internuclear axis and rotational angular
momentum distributions.

Figures 3 and 4 show some of these portraits, obtained
with quantum polarization moments. In each of them, the
left column shows “molecular axis portraits” (plots of the
intrinsic dependence of the reaction on the direction of the
internuclear axis of the D2 reactant), whereas the right
column shows “rotational portraits” (plots of the intrinsic
dependence of the reaction on the direction of the rotational
angular momentum of the D2 reactant). Figure 3 shows the
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results integrated over the scattering angle for the

reaction withj′ ) 5 or j′ ) 10 and atEcoll ) 1.306 eV, whereas
Figure 4 showsθ-dependent results for the

reaction obtained withθ ) 4, 8, or 11° and at the same collision
energy. In other words, Figure 3 shows theP(θr, ær) and
Q(θj, æj) functions obtained through use of the intrinsic PPs as
the polarization moments in eqs 17 and 18, whereas Figure 4
shows theP(θ, θr, ær) and Q(θ, θj, æj) functions obtained
through use of the intrinsic renormalized PDDCSs as the
polarization moments in eqs 17 and 18.

In our opinion, pictures such as those in Figures 3 and 4 give
the best possible representations of what back in 1990 Levine61

called the “chemical shape” (as opposed to “physical shape”)
of a chemical reaction and as such fulfill one of the long standing
dreams of chemical reaction stereodynamics: to determine the
“shapes” of atoms and moleculesas perceiVed by each other
when they take part in a reactive collision.

Figures 3 and 4 also justify our use of the words “insight”
and “understanding” in the heading of this section. A brief
consideration of each of them does give significant insight into
the reaction stereochemistry and also facilitates understanding
of its mechanism. For instance, Figure 3 leads very naturally
to the hypothesis that the amount of rotational energy of the
HD product in reaction 47 is related to the collision geometry,
with head-on reactive collisions leading to little product
rotational excitation (cf. thej′ ) 5, top row of Figure 3) and
side-on reactive collisions leading to larger product rotational
excitation (cf. thej′ ) 10, bottom row of Figure 3). One might
then speculate that this effect has to do with the amount of

bending energy of the collision complex in the transition state
region, although of course a thorough justification of such a
claim would require a more detailed analysis, which is not the
purpose of this article.

Useful as they are in terms of qualitative understanding, the
stereodynamical portraits presented above are not suitable for
quantitative analyses. In quantitative terms, the key ingredients
of the intrinsic approach to reaction stereodynamics are the
intrinsic polarization-dependent differential cross sections (PD-
DCSs) and polarization parameters (PPs) introduced in Sections
2.2 and 2.7, which are the numerical parameters behind the
stereodynamical portraits presented above.

Figures 5-7 show the PPs and renormalized PDDCSs
calculated again at theEcoll ) 1.306 eV collision energy. Each
of these pictures includes both quantum and quasiclassical data,
which allows for a quantitative assessment of the level of
agreement between the two calculations.

Figures 5 and 6 show the real PPs of rankk ) 1, 2, or 4,
obtained for reaction 47 as a function of the HD product
rotational state. As can be seen, the agreement between the
quantum and quasiclassical PPs is impressive. Furthermore,
these Figures show that thes0

{2} polarization parameter is the
most relevant one for the differences found between the

Figure 3. Stereodynamical portraits revealing the chemical shape of
reaction 47 atEcoll ) 1.306 eV withj′ ) 5 (top) or j′ ) 10 (bottom).
The molecular axis portraits in the left column show the preferred
distributions for the interatomic axis of the D2 reactant, whereas the
rotational portraits in the right column show the preferred distributions
for the molecular rotational angular momentum. For the sake of clarity,
the axes have been displaced from the center of each of the figures.
See Section 2.1 for the definition of thexyzscattering frame.

Figure 4. Stereodynamical portraits revealing the chemical shape of
reaction 48 atEcoll ) 1.306 eV and withθ ) 4° (top),θ ) 8° (middle),
or θ ) 11° (bottom). The molecular axis portraits in the left column
show the preferred distributions for the interatomic axis of the D2

reactant, whereas the rotational portraits in the right column show the
preferred distributions for the molecular rotational angular momentum.
The scattering angle,θ, between the reactant-approach and product-
recoil directions is the angle between the vectorsk ≡ z andk′. As in
Figure 3, the axes have been displaced from the center of each of the
figures. See Section 2.1 for the definition of thexyzscattering frame.

H + D2(V ) 0, j ) 2) f HD(V′ ) 0, j′) + D (47)

H + D2(V ) 0, j ) 2) 98
θ

HD(V′ ) 0, j′ ) 0) + D (48)
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stereodynamical portraits of reactions leading to HD(j′ ) 5) or
HD(j′ ) 10) (see Figure 3). Thes0

{2} parameter is the one
whose value changes the most betweenj′ ) 5 andj′ ) 10, going
from rather negative atj′ ) 5 (its quantum value is-0.18,
whereas the negative limit18 for j ) 2 is-0.53) to rather positive
at j′ ) 10 (its quantum value is 0.16, whereas the positive limit18

for j ) 2 is +0.53). Because moments withk ) 2 andq ) 0
are indicative of the alignment of the rotational angular
momentum vector with respect to the quantization axis,z, the
observation that thes0

{2} parameter is so important for the
reaction dynamics strongly suggests that experiments involving
reactant rotational alignment are likely to shed considerable light
on the reaction dynamics. The possible experiment we described
in Section 4 is precisely of this kind, and we will further explore
the impact of reactant rotational alignment on measurable
quantities.

Figure 7 shows the intrinsic renormalized PDDCSs of rank
k ) 2 and componentq ) 0 as a function of the scattering
angle for selected HD(V′ ) 0, j′) product states. Before
commenting on these results, one must remember that these
renormalized PDDCCs are not indicative of reaction probability
but rather of the preferred reactant polarization at each scattering
angle. Because the reaction probability itself does change with
scattering angle, one must take the product angular distributions
into account when analyzing the renormalized PDDCSs.

Formation of HD(V′ ) 0, j′ ) 1) is dominated by backward
scattering, but there is also significant forward scattering.
Consideration of Figure 7 shows that the agreement between
quantum and quasiclassical data, although quite good in the
backward scattering region, is not so good in the forward
scattering region, where the QCT calculations fail to reproduce
the pronounced oscillations of the quantum PDDCS. This
information is interesting, and suggests a purely quantum origin
for the observed oscillation, which is also seen in the stereo-
dynamical portraits of Figure 4. One might, for instance, attribute
the oscillation to an interference effect, similar to that found
by Althorpe and co-workers62,63 in their plane wave-packet
analysis of this reaction; the interference might be between near-
side and far-side reaction mechanisms.64

In the case of the other product states included in Figure 7,
the dynamics is dominated by forward and/or sideways scat-
tering. In these regions, the agreement between quantum and
quasiclassical data is generally good, although not as quantitative

as the one found for the polarization parameters. As one might
expect, the more detailed reaction properties (the PDDCSs)
constitute a more stringent test of the accuracy of the calculations
than the less detailed ones (the PPs).

Exam of the intrinsic reactant PDDCSs andθ-dependent
stereodynamical portraits raises an intriguing question: why
does the stereochemistry change so much, and in not such a
simple fashion, with the scattering angle? (Here we are not
talking about the fast quantum oscillations discussed above but
rather about the broader ones that are seen in the quasiclassical
as well as in the quantum data.) Here one might, for instance,
speculate that the observed changes are related to the charac-
teristics of the “bottleneck” states of the collision complex in
the transition-state region. Yet another example of how intrinsic
stereodynamical properties can give insight and be relevant for
the understanding of reaction mechanisms but also yet another
question we shall not consider in this paper.

5.2. The Practical Approach: Experimental Control
Possibilities. In Section 5.1, we have only examined intrinsic
stereodynamical properties obtained without consideration of
actual reactant polarizations. Although that method can give
understanding and insight into the reaction stereodynamics, it
cannot predict the outcome of practical situations and actual
experiments. To deal with these, one needs the practical
approach we now describe.

The “practical approach” is largely a trial-and-error procedure,
in which reaction outcomes are determined with different
reactant polarizations, and the corresponding results are com-

Figure 5. QM (solid line, solid circles) and QCT (dashed line, open
circles) intrinsic polarization parameters of reaction 47 withk ) 1, 2
at Ecoll ) 1.306 eV as a function of the HD product rotational state.
The ranges of the vertical axes coincide with the allowed quantum
ranges of these parameters forj ) 2.

Figure 6. As in Figure 5, but withk ) 4 andq ) 0-3.

Figure 7. Intrinsic renormalized PDDCSs of rankk ) 2 and component
q ) 0 of reaction 46 intoV′ ) 0, j′ ) 1, 4, 8, or 10 atEcoll ) 1.306 eV
as a function of scattering angle.
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pared. The idea is to examine the extent to which the reaction
outcome (say, its cross section or the product state distribution)
can be influenced by actual reactant polarization schemes and
the extent to which one can use reactant polarization to
(passively) control the reaction.

As described in Section 4, the proposed experiment involves
D2 alignment with regard to the reactant-approach directionk
and possibly the product-recoil direction as well. With this in
mind, we have restricted our examples to alignment effects. It
should be noted, however, that this is not a necessary restriction;
we could have easily included orientation effects in our
theoretical examples.

In the experiment we have proposed, the alignment direction
is determined byâ and R, the polar and azimuthal angles
specifying the direction of the electric field vector inxyz (the
scattering frame of reference, see Sections 2.1 and 4). We
consider here cases in which both of these angles are specified
(this is appropriate for experiments involving angularly resolved
product detection and therefore for measurements of DCSs and
special ICSs), and also cases in which onlyâ is determined,
whereasR is averaged out (this is appropriate for measurements
of ordinary ICSs).

The values we have considered for the polar angle are

(â ) 54.74° is the so-called “magic angle” at whichP2(cosâ)
) 0.) When considering specific values for the azimuthal angle,
we have used

When analyzing the data presented below, it will be useful to
remember that the D2 interatomic axis,r , and rotational angular
momentum,j , are respectively aligned along or perpendicular
to the direction specified byâ andR.

Figure 8 shows quantum data illustrating the effect of the
polar angle,â, on the excitation function (the integral cross
section,σ â, summed over all product states, as a function of
energy). The solid line corresponds to the usual excitation
function (isotropic case, no D2 polarization), whereas the others
include the effect of D2 alignment. The dependence of the

reaction cross section on the reactant alignment is clear:
reactivity is enhanced by head-on collinear collisions (â ) 0°,
r parallel tok andj perpendicular tok), diminished by side-on
collisions (â ) 90°, r perpendicular tok and j parallel tok),
and largely unaffected by alignment along the magic angle
(which is equivalent to using equal amounts of collinear and
perpendicular alignment). Although this is not exactly an
unexpected result for the reaction we are considering here (the
H + D2 reaction has long been known to be collinearly-
constrained), one should note that Figure 8, besides revealing a
preference for collinear collisions, alsoquantifiesit, showing
the extent to which the reactivity can be controlled by selective
reactant polarization.

The effect of D2 alignment on product rotational state
distributions atEcoll ) 1.306 eV (the HD vibrational state isV′
) 0) is clearly seen in Figure 9, which shows quasiclassical
(top) and quantum (bottom) data, obtained with the sameâ
values considered above. The two data sets are in very good
agreement, indicating a clear effect: collinear collisions (â )
0°) lead to a colder product rotational state distribution, whereas
side-on collisions (â ) 90°) make it hotter, and magic-angle
alignment again leads to results similar to those obtained without
reactant polarization. Consideration of these results, along with
the stereodynamical portraits of Figure 3, suggests that low/
high j′ values are associated with collision with low/high impact
parameters and thus with transition states with lower/higher
bending vibrational energy. Note that the integral cross sections
for formation of the product states considered in Figure 3,j′ )

Figure 8. Excitation function of the H+ D2(V ) 0, j ) 2) reaction
for different D2 alignment directions. The curve labeled as iso
corresponds to the situation in which D2 is unpolarized and the initial
j vector is therefore random. The borders between the white and gray
areas represent the maximum and minimum possible values ofσ â and
were obtained with the min-maximization procedure described in
Section 5.3.

Figure 9. Integral cross section of reaction 47 atEcoll ) 1.306 eV as
a function of the product rotational state for different D2 alignment
directions. The top panel shows quasiclassical results, and the bottom
panel shows quantum mechanical ones.

â ) 0°, 54.74° or 90°

R ) 0°, 45°, 90° or 180°
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5 and 10, respond to reactant alignment in opposite ways, with
one being enhanced when the other is diminished.

Comparison of the rotational distributions of Figure 9 with
the polarization parameters of Figures 5 and 6 is also illustrative.
The first thing to note is that, because the product recoil direction
is not specified, we have cylindrical symmetry around the
reactant-approach direction,k: as shown by eqs 15 and 43, the
only polarization parameters that contribute to the integral cross
section ares0

{0}, s0
{2}, ands0

{4}; of these,s0
{2} is the one that is

largely responsible for the polarization effects (see Section 5.1).
As shown in Figure 5, this PP is quite negative forj′ j 5 and
quite positive forj′ J 10, changing sign aroundj′ ) 8. No
surprise, then, that preparation of reactants witha0

{2} ) -
0.535, 0, or 0.267 (these are the quantum values of the extrinsic
polarization moments corresponding to reactant alignment along
â ) 0, 54.74, or 90°, respectively) lead to increasingly hot
product rotational state distributions.

We now turn to the effect of reactant polarization on
differential cross sections, which requires us to also consider
specific values for the azimuthal angle,R. This further increases
the stereospecificity of the experiment and can have a dramatic
effect on the ability to control the system reactivity.

Figure 10 shows quasiclassical (top) and quantum (bottom)
differential cross sections for reactions leading to HD(V′ ) 0,
j′ ) all) at Ecoll ) 1.306 eV, considering selected combinations
of values forâ and R as well as reactions without reactant
polarization (labeled as “iso” in the picture). Given the level of
detail of the property being considered, the agreement between
quantum and QCT data is indeed remarkable, as is the variety
of shapes one can obtain for the angular distributions by varying
the direction along which the reactant molecule is aligned (i.e.,
by selecting specific values forâ andR).

Inspection of Figure 10 shows that head-on collisions (those
favored byâ ) 0°) lead to an angular distribution that, compared
to the one obtained in the isotropic case (that is, when the
collision involves unpolarized reactants), is more focused on
the backward scattering region. However, side-on collisions
(those favored byâ ) 90°) enhance sideways scattering,
whereas alignment along the magic angle (â ) 54.74°) leads
to an intermediate result.

Also quite evident in Figure 10 is the importance of the
azimuthal angle,R, whose value can have a dramatic effect on
the observed results. This is illustrated by the curves obtained
with â ) 54.74°, R ) 45° or with â ) 54.74°, R ) 180°:
although the former polarization direction leads to a DCS that
has a similar shape to but is less intense than the DCS obtained
with isotropic reactants, the latter leads to a very significant
enhancement of the DCS, which is particularly pronounced near
θ ) 115°. Note thatR ) 0° andR ) 180° both correspond to
situations in which the internuclear axis is on or near the
scattering plane containingk and k′, but that the respective
collision geometries differ, with the D2 interatomic axis being
tilted along the quadrants of the scattering frame where therxrz

product is either negative or positive. Values ofR in the 45° e
R e 135° range, however, indicate the predominance of
collisions in which the D2 interatomic axis is close to perpen-
dicular to the scattering plane. The fact that a large increase in
the DCS is observed forR ) 180° indicates that the reaction is
predominantly coplanar; that is, the scattering plane and that
containing the three atoms remain coincident in the course of
the reaction.

We present further illustration of the importance of the
azimuthal angle,R, for the observed differential cross section
in Figure 11. It contains quantum state-to-state results for
reactions leading to HD(V′ ) 0, j′ ) 0) scattering in the
backward (top) and forward (bottom) scattering regions (the
DCS of such reactions in the 30° e θ e 120° region is
invariably very small); the combinations ofâ andR values are
the same ones used in Figure 10. Besides confirming the
sensitivity of the product angular distribution to the value of
the azimuthal angle,R, Figure 11 shows that the variation can
be significant even within strikingly small scattering angle
intervals (something that, from the point of view of intrinsic
properties, was illustrated by the strongly contrasting stereo-
dynamical portraits of Figure 4). Let us compare, for instance,
â ) 0° to â ) 54.74°, R ) 180°: the first polarization direction
leads to DCS maxima atθ ) 0° andθ ) 180° and to scattering
nodes nearθ ) 6° and θ ) 160°, whereas the second
polarization direction leads to a DCS with scattering nodes
where the first had maxima and with local maxima where the
first had nodes. In our opinion, it is truly remarkable that such
contrasts can be observed within such small scattering angle
intervals.

Another way of visualizing the effect of the D2 alignment
direction on the reaction we are considering here is by using
scattering angle-recoil velocity polar maps such as the ones in
Figure 12, which were plotted using quantum data obtained with
Ecoll ) 1.306 eV. These polar maps show the value of the DCS
over a plane in which the polar angle represents the scattering
angle,θ, whereas the radial distance to the center is a measure
of the product recoil energy (the larger the distance the larger
the recoil energy and the smaller the internal energy of the
products; the outer ring corresponds toV′ ) 0, j′ ) 0, andV′
and j′ increase toward the center). Previous observations are
also visible in these plots: collinear collisions (D2 alignment
alongâ ) 0°) lead to a pronounced enhancement of backward

Figure 10. Differential cross section, summed over product rotational
states, of reaction 47 atEcoll ) 1.306 eV and for different D2 alignment
directions. The top panel shows quasiclassical results, and the bottom
panel shows quantum mechanical ones.
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scattering with regard to the isotropic case (no D2 polarization),
whereas side-on collisions (45° e â e 135°) lead to an
enhancement of sideways scattering, with the shapes and
magnitudes of the polar maps also depending on whether the
side-on collisions are coplanar or not. It also becomes clear from
these representations that side-on collisions give rise to an
appreciable rotational excitation especially manifest in the
sideways scattering.

Another example of the effect of the D2 alignment on the
reactivity can be obtained as follows: suppose that we integrate
each of the previous polar maps over the scattering angle and
the recoil velocity. The resulting quantity, the special ICS,
obviously depends on bothâ andR. Note that in this case the
position of the scattering plane is well defined with respect to
the direction of the polarization vector of the excitation laser
despite the integration over the scattering angle,θ. The results
obtained as a function of the collision energy are represented
in Figure 13 for different combinations ofâ andR. As will be
explained in Section 5.3, the magnitude of the special ICS is
bound within the range indicated by the white area of the figure
for a laboratory preparation of|j ) 2, m ) 0〉. At low collision
energies, the highest and lowest values ofσ̃ R

â are obtained with

â ) 0° and withâ ) 90°, R ) 0°, respectively. However, with
increasingEcoll, the alignments that maximize and minimize the
special ICS tend to be those withâ equal to the magic angle
andR ) 180° andR ) 0°, respectively. This indicates that side-
on attack with the internuclear axis in the scattering plane can
lead to maximal as well as minimal values for the special ICS,
depending on the value ofR. This azimuthal angle is thus shown
to be a very relevant stereodynamical parameter.

5.3. The Min-Max Approach: Theoretical Control Limits.
The results we have just presented show that D2 polarization,
and D2 alignment in particular, can have a dramatic effect on
the outcome of the H+ D2 collision. By selecting specific
directions for the D2 alignment, we have obtained starkly
contrasting reactive cross sections as well as starkly contrasting
product state distributions.

The question that follows is this: is it possible to improve
on those results? Can one make the contrasts even starker? If
one wants to, say, increase or decrease the reactive cross
sections, how far can one go? This is where the min-max
approach steps in.

In other words, the question asked in the previous paragraph
was, “can one determine the (extrinsic) reactant polarization
moments that lead to minimal and maximal reactive cross
sections?” The answer is that this is not only possible, but
(theoretically at least) rather straightforward. All one has to do
is, having determined intrinsic PPs and PDDCSs, to apply
standard computational minimization/maximization techniques69

using the cross section formulas. (In the most general case, these
are eqs 8, 14, and 15. If the goal is to determine what is
achievable with the experimental setup described above, then
the required formulas are those of eqs 41-43.) We have done
that and have found that the calculations invariably converge
promptly.

Results from two such “min-max” calculations are shown in
Figures 8 and 13. In these two cases, we were interested in the
determination of the direction of D2(V ) 0, j ) 2) alignment
that would lead to the largest or smallest possible values for
the ICS (Figure 8) or for the special ICS (Figure 13).

In the case of the ICSs of Figure 8, the only adjustable
parameter is the angleâ, see eq 43. Its determination has led to
the minimal and maximal ICSs depicted in Figure 8 as the
borders between the theoretically allowed (white) and theoreti-
cally forbidden (gray) regions forσ â. Figure 14 further
illustrates the results obtained, showing on its left panel theâ
values leading to minimal and maximal ICSs at the collision
energies considered; note that because the azimuthal angle,R,
plays no role here (it is averaged out, as discussed in Sections
2.8 and 4), one does not need to considerâ values outside the
0 e â e 90° range.

Figure 14 shows that theâ values that maximizeσ â are
invariably close to zero. This explains why theâ ) 0° curve is
invariably at or very close to the upper limit of the allowedσ â

region in Figure 8 and is further evidence that collinear H+
D2 collisions lead to an increased reactivity, although we will
have more to say about this in the next paragraph. As for theâ
values that minimizeσ â, they are invariably close toâ ) 90°.
This explains why theâ ) 90° curve is invariably at or very
close to the lower limit of the allowedσ â region in Figure 8,
and complements the maximization information, showing that
side-on H+ D2 collisions lead to a decreased reactivity.

Min-maximization of the special ICS of Figure 13 involves
two adjustable parameters (â andR) rather than only one, see
eq 42. Their determination has led to the minimal and maximal
special ICSs depicted in Figure 13 as the borders between the

Figure 11. Quantum differential cross section of reaction 48 atEcoll

) 1.306 eV and for different D2 alignment directions. The top and
bottom panel show the backward and forward scattering region,
respectively. The border between the white and gray areas represents
the maximum possible values of dσ R

â/dω. The minimum possible
values lie at the horizontal, dσ R

â/dω ) 0 axis. The minimum and
maximum values were obtained with the min-maximization procedure
described in Section 5.3.
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theoretically allowed (white) and theoretically forbidden (gray)
regions forσ R

â. Figure 14 again further illustrates the results
obtained, showing on its right panel theâ andR values leading
to minimal and maximal special ICSs at the collision energies
considered.

Figure 14 shows that theâ andR values that maximizeσ̃ R
â

satisfyâ < 90°, R ) 180°: reactivity is enhanced by coplanar
collisions in which the D2 interatomic axis is tilted toward the
incoming H atom rather than away from it. It also shows that,
when a more detailed analysis is carried out, one finds that, as
far as reactivity is concerned, the best collision geometry is
actually not collinear. Indeed, none of ourσ̃ R

â maximizations
have led to zero as the optimumâ value. Instead, we have found
that this optimum value steadily increases fromâ ≈ 15° near
the reaction threshold toâ ≈ 60° at the highest collision energies
considered. At the high collision energies, the optimum collision
geometry is not even approximately collinear as suggested by
the σ â values, but rather coplanar and approximately side-on.
This explains why theâ ) 0° curve is close to the upper limit
of the allowed σ̃ R

â region in Figure 13 only at very low
collision energies and also why at higher collision energies it
is coplanar magic-angle collisions that lead to special ICSs
approaching their maximum possible values. As shown by
Figure 13, selection of the azimuthal angle allows one to double
the system reactivity.

As for theâ andR values that minimizeσ̃ R
â, they invariably

indicate that side-on collisions in which the D2 axis is
perpendicular to the scattering plane are those that reduce
reactivity the most. Consideration of Figure 13, however, leads
to an interesting observation: coplanar magic-angle collisions

in which the D2 interatomic axis is tilted the “wrong” way (away
from the incoming H atom rather than toward it) can lead to a
similar reactivity reduction, in particular at the higher collision
energies at which the “right” coplanar magic-angle collisions
lead to almost maximumσ̃ R

â values.

We close this section with three remarks about application
of the min-max approach. The first is that, although the min-
max calculations we have reported on have been constrained
(the scattering-frame extrinsic reactant polarization moments
were obtained by rotation of laboratory-frame moments, and
the values of these were fixed), they do not have to be limited
in this way: the values of the extrinsic reactants polarization
moments, theaq

(k) values, can be chosen freely. Unconstrained
min-max calculations are not significantly harder than con-
strained ones, and we have actually performed many of those.
(They can lead to significantly larger maximal cross sections
and to virtually zero minimal cross sections.) Experimental
verification of the unconstrained results, however, is currently
unfeasible, although the situation may change when adaptive
control experiments of the type pioneered by Gerber and co-
workers70 become able to deal with bimolecular collisions.

The second remark is that, although we have only discussed
min-max results for integral cross sections, the approach can
also be applied to other reaction properties, for example,
differential cross sections and product state distributions.
(Indeed, Figure 11 shows min-max results for a differential cross
section, the maximization results are shown as the border
between the theoretically allowed (white) and theoretically
forbidden (gray) regions, whereas the minimization results

Figure 12. Quantum triple (angle-velocity) differential cross section of the H+ D2 reaction atEcoll ) 1.306 eV and for different D2 alignment
directions.
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(which have lead to a vanishing DCS for every scattering angle)
lie along the horizontal, dσ R

â/dω ) 0 axis.)
The final remark is that, in general, the results from min-

max calculations will be better represented by extrinsic stereo-
dynamical portraits (or, equivalently, by a complete set of
extrinsic polarization moments) than by a single direction along
which reactants are to be oriented or aligned. In the case of the
results presented above, the distinction was unnecessary because
the calculations were done with the experimental setup described
in Section 4 in mind and theâ andR values uniquely determined
the extrinsic reactants portraits and polarization moments, see
Figure 1 and eq 40. However, this is not always the case; in
unconstrained min-maximizations, for instance, this is certainly
not so. In general, it is comparison between the actual (extrinsic)
reactants polarization portraits and their intrinsic counterparts
that will allow one to obtain the full picture. We can use
production of pure states as an example. If we are interested
in, say, the DCS of reaction 48 atEcoll ) 1.306 eV andθ ) 4°,
we know what the result of an unconstrained maximization must
be: the extrinsic reactants portraits must be identical to the
intrinsic portraits shown in the top row of Figure 4. This is
because in the case of production of pure states it is possible to
create a pure reactant polarization state that, in terms of the
metaphor introduced earlier, gives to the reaction exactly what
it wants. Considering the stereodynamical portraits in Figure
4, one can see that they are not defined simply by a particular
direction in space because their shapes can also change. To fully
understand the stereochemistry of a reactive collision, one must
consider the full picture (directionsand shapes of the spatial
distributions of molecular axes and rotational angular momenta)
rather than a single spatial direction.

6. Conclusions

Motivated by the possibility that such work might contribute
to an increased understanding of molecular collisions and to a
better assessment of experimental control possibilities, we have
presented a theoretical method and proposed an experiment for
the study of the effect of the reactants polarization on the
dynamics of atom-diatom collisions.

The theoretical formalism was stated in general terms. This
allows it to deal with arbitrary reactant polarization schemes,

and to be used in conjunction with both quantum reactive
scattering and quasiclassical trajectory calculations.

In terms of understanding, two central aspects of the theory
presented here are (i) the formal distinction between and
separation of intrinsic and extrinsic reactant polarizations, and
(ii) the introduction of stereodynamical portraits.

The separation of intrinsic reactant polarizations from their
extrinsic counterparts allows one to analyze the collision
stereodynamics per se, without consideration of external factors
that, although indispensable in practical situations, can be
restrictive with regard to analyses of reaction mechanisms. That
does not imply, however, that extrinsic polarizations and
practical situations cannot be considered: they can, and have
been, in a straightforward and flexible way.

The introduction of stereodynamical portraits allows for a
visual description of reaction stereodynamics that, although not
containing more information than the traditional one in terms
of polarization moments only, conveys that information in what
we think is a very informative and intuitively appealing way.
The need for such visual representations has long been
recognized, at least since 1990, when Levine61 introduced the
concept of chemical shape of colliding molecules, but in our
opinion the potential of the idea had not yet been fully realized.
The reason was the lack of an exact way of graphically
representing angular momentum distributions, a problem that
has only been solved recently.46,47

In terms of experimental control possibilities, we think that
the main contribution of this article is the description of an
experiment that, although seriously challenging, should be
feasible with current technology. Successful conduction of this
experiment would allow for stringent tests of the theoretical
predictions.

We have used quantum and quasiclassical results for the
benchmark H+ D2 reaction to illustrate how the theoretical
methods can be used and what can be achieved in the proposed
experiment. In so doing, we have found that D2 polarization,
and alignment in particular, has (theoretically at least) a large
influence on reaction cross sections and product state distribu-
tions.

Some of the results we have obtained reveal not only strong
but also surprising effects. A representative example in that
regard is the observation that, when the collision energy exceeds
1 eV, the collision geometry that maximizes the cross section
of the “collinearly constrained” H+ D2 reaction is actually not
collinear at all. Instead, it is side-on, with strong coplanarity

Figure 13. Quantum special ICS as a function of the H+ D2 (V ) 0,
j ) 2) collision energy for different D2 alignment directions specified
by the values ofâ and R. The borders between the white and gray
areas represent the maximum and minimum possible values ofσ̃ R

â and
were obtained with the min-maximization procedure described in
Section 5.3.

Figure 14. Values of the angles specifying the D2(V ) 0, j ) 2)
alignment directions leading to maximal or minimal ICSs and special
ICSs according to QM. The maximal and minimal ICSs are shown in
Figure 8, and the maximal and minimal special ICSs in Figure 13. In
either case, they appear in those figures as the borders between the
theoretically allowed (white) and theoretically forbidden (gray) regions.
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requirements. Although the “right” type of coplanar side-on
collision leads to maximal reactivity, the “wrong” one takes
reactivity very close to its lowest possible value.

In the introduction to this paper, using the Li+ HF system
as an example, we have commented on how detailed studies of
the stereodynamics of molecular collisions often lead to
unexpected results. This has also proved to be the case for H+
D2, by far the most studied and best understood of all elementary
reactions. This shows that much remains to be done if we are
to thoroughly understand the influence of stereochemical factors
on the reactivity of such systems. More research is necessary,
and we hope the results reported here will help motivate
experimentalists and theoreticians alike to further work on this
beautiful and intriguing problem.
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