6200 J. Phys. Chem. R005,109,6200-6217

How Reactants Polarization Can Be Used to Change and Unravel Chemical Reactivity

Jess Aldegunde

Departamento de Qmica Fsica, Facultad de Ciencias Quicas, Uniersidad de Salamanca,
Salamanca, Spain

Marcelo P. de Miranda* and James M. Haigh
School of Chemistry, Upérsity of Leeds, Leeds LS2 9JT, United Kingdom

Brian K. Kendrick
Theoretical Duision (T-12, MS-B268), Los Alamos National Laboratory, Los Alamos, New Mexico 87545

V. Saez-Raanos

Departamento de Qmica y BiogUmica, Escuela Tanica Superior de Ingenieros de Montes, kbrsidad
Politécnica de Madrid, 28040 Madrid, Spain

F. Javier Aoiz'
Departamento de Qmica Fsica, Facultad de Qunica, Unversidad Complutense, 28040 Madrid, Spain

Receied: March 9, 2005; In Final Form: May 10, 2005

This article presents theoretical methods for the description of the directional effect of reactant rotation on
the reactivity of atomrdiatom systems and suggests an experiment that could be used to test theoretical
predictions. The theory can be used in conjunction with both quantum reactive scattering and quasiclassical
trajectory calculations, and is stated in general terms, which allows it to deal with arbitrary reactant polarizations.
The illustrative results obtained for the benchmark-HD, reaction are also presented and show that under
experimentally achievable conditions one can largely control reactive cross sections and product state
distributions, while at the same time gaining valuable and at times surprising information on the reaction
mechanism.

1. Introduction theoretical predictions for possible outcomes of the proposed
experiment.

From a purely theoretical point of view, there is no significant
difference between reactants and products polarization. What
matters in either case is whether the reaction probability changes
when the collision partners are polarized, in other words,
whether the reaction dynamics privileges certain relative mo-
lecular orientations or relative directions of motion. (For articles

Two of the most persistent goals of scientific investigations
of the dynamics of molecular collisions are understanding and
control12 On one hand, collision dynamicists strive for a
detailed understanding of collision mechanisms and of the role
of energetic and directional factors in scattering evéntn
the other hand, they attempt to devise techniques for the control

of molecular collisions and, in particular, for the selection of di ing thi q th s of the d d ¢
desired collision outcomés8 Naturally, the two endeavors go IScussing this and many other aspects of tne dependence o
reaction dynamics on spatial directions, see the special editions

hand in hand. The understanding of collision mechanisms >° . L .
facilitates the development of control schemes, whereas analysisofjournals dedicated to the biennial stereodynamics conferences,

of the dynamics of controlled collisions can offer important clues refs 9-16.) ) ) ) )
about collision mechanisms. From a practical point of view, however, there are differences.

An important one is that reactant polarization is determined by
external intervention (laboratory preparation of polarized reac-

We consider here the role of reactant polarization in the Y P . )
dynamics of reactive collisions and present theoretical methods@Nts). whereas product polarization is determined by the reaction

that can be useful (i) for the analysis of the dependence of itself. In particular, this means that in practice one cannot fully
reaction mechanisms on reactant polarization and (ii) for the gontrol thg polarization of the reactants with regard to the (body-
selection of optimum reactant polarization schemes for the fixed) CO”'S’_'O” referenge frame.. o
control of reaction probabilities and product state distributions. ~ Another important difference is that common intuition and
To encourage experimental approaches to the problem, we als@ractical applications generally introduce a bias in the way one
describe what we consider to be a challenging yet feasible regards a chemical reaction: although the state of reactants is
experiment capable of probing the phenomena we addressseen as a factor_that causes the_ dynami_cs to unfold_the way it
theoretically and include, among other illustrative results, does, the formation of products in a particular state is seen as
but a consequence of it. It is as if reactants existed a priori and
* Corresponding author. E-mail: m.miranda@leeds.ac.uk. products only a posteriori, even when the application under
T E-mail: aoiz@quim.ucm.es. consideration actually involves a time-independent process. This

The subject matter of this article is related to both issues.
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makes reactant preparation a much more obvious choice forthe HD alignment moments, and this provided important clues
the control of reaction probabilities than product selection. (Here for the analysis of the reaction dynamics, which was also done
we are talking about control in the passive sense: externalby considering theoretical results from QCT and quantum
intervention is restricted to the asymptotic conditions of the scattering calculatiod® on the G3 potential energy surfate.
reactive system. In active control schemes, the external interven-Alignment effects were found to be important, with close-to-
tion is not restricted in this way.) collinear collisions enhancing reactivity.

Studies of reactant polarization must therefore deal with this We would also like to note that, although the fact that the
dichotomy. The theory is most powerful when the collision is Mmutual orientation of reagent molecules influences chemical
examined from a body-fixed perspective and does not require reactions is rather obvious, much remains to be done if we are
formal distinctions between reactants and products. Practicalto thoroughly understand how exactly and to what extent that
applications, however, are at least partially restricted to space-is s0. Indeed, it is often the case that detailed studies of the
fixed points of view and do introduce distinctions between stereodynamics of molecular collisions lead to surprising,
reactants and products. Instead of developing separate method§ounterintuitive results. Examples are abundant (see, for in-
appropriate for particular cases, it is convenient to obtain a stance, refs 916), but a particularly striking one is provided
general method that allows for transformations from general by the Li+ HF system. Quantum theoretical stud#¥ of this

situations to particular cases. This is precisely the approach wereaction at zero total angular momentum and with HF in its
have used. ground vibrational state have indicated that formation of the

LiF product is favored not only when the Li atom attacks the F
end of HF, as one would intuitively expect, but also (and perhaps
more strongly) when the Li atom attacks the H end of HF, an
effect that had also been suggested by early QCT calculattons.

As already mentioned, our main interest here is in the role
of reactant polarization in the dynamics of reactive collisions.
For the sake of objectivity, our presentation and examples are
adapted to this situation. Other situations in which one is , ! ‘
interested, say, in both reactant and product polarization, or ebeExpenmg;‘gal studies of the same reaction by Loesch and co-
in nonreactive as well as reactive collisions, can be dealt with Workers;?>** this time involving HF¢ = 1) molecules, have

by generalized versions of the methodology presented here. confirmed steric ef_fects to be ?mportan_t, butina rather_diﬁeren_t
. i . manner. The detailed analysis of their data was carried out in
We present two versions of our method: one classical,

appropriate for use in conjunction with quasiclassical trajector the light of wave-packéf and QCT® calculations, and the
((S)E:T)pcalculations the otjher uantum?nechanical a :0 ria%/etheoretical studies have lead to the conclusion that steric effects

. . ? ) q . » approp are actually quite unimportant for the integral reaction cross
for use in conjunction with quantum scattering calculations. In

either case, we also consider the procedures (transformation section summed over product states but much more significant
! - P Sor differential properties and for the product state distribution,
between laboratory and collision reference frames) necessar

for the analysis of actual reactant polarization experiments with formation of LiF in itsu/ = 0 or / = 3 vibrational states
lllustrative examples, in which we consider thetHD,(v = 0, being favored, respectively, by head-on or side-ontLHF

o . ; - ; . collisions38
] = 2) reaction and possible experiments involvingallgnment, Detailed stereodynamical studies are therefore important to
are also presented.

) ] solidify our understanding of the mechanisms of chemical
The quantum and classical theoretical methods presented her‘?eactions, and can also point out if and to what extent the
are modified and extended versions of the quadfifiand  gejection of reactant states can be used to manipulate reaction
classical®* methods we have used before for the description probabilities and product state distributions. This paper discusses
of polarization effects in the dynamics of atemiatom reac-  theoretical and experimental methods that have the potential to

tions, which in turn were strongly based on previous vector pe yseful in that regard, along with illustrative examples.
correlation theoried>*® We have stated the quantum and  The article is organized as follows. The presentation of the
classical theories using analogous formalisms and have reV'Se%eory starts in Section 2 with a description of the quantities
or extended some of the definitions used in the past in order to jqyolved and their physical meanings, and is concluded in
maximize the chemical insight that can be gained by analysis ggction 3 with an account of the mathematical and computa-
of the calculable (and observable) quantities and in order 10 tjona| procedures necessary for actual calculations. This is
facilitate the comparison between (possibly experimental) follomed in Section 4 by the description of the reactant
quantum and classical results. polarization experiment we are proposing. Results that illustrate
The reason for the selection of an example involving reactant how the [heory can be used, and also what can be observed in
alignment at g = 2 rotational level (as opposed to a more the proposed experiment, are presented in Section 5. Section 6
general polarization state, also involving the orientation or then closes the paper with a summary of our main results and
coherent superposition of states with different rotational quantum conclusions.
numbers) is our belief in the feasibility of experiments of this
type involving reactions amenable to accurate theoretical 2. Overview of Theory
treatment. Indeed, one such experiment has already been
performed by Zare and co-workers at Stanford UniverSity.
They have measured HD alignment effects in the dynamics of
the Cl+ HD(v = 1, ] = 2) reaction using stimulated Raman
pumping (SRP) to prepare HDE 1, = 2, m= 0) molecules Epd
(quantization axis along the laser polarization directgrby A + BC(v,j, m) —— AB(v',j’,m) + C Q)
pumping of theS0) transition with parallel laser polarization.
This corresponds to negative alignment of the rotational angular where », j, m and their primed counterparts are vibrational,
momentum vectorj (preferentially perpendicular tB), and to rotational and magnetic quantum numbetds the scattering
positive alignment of the HD internuclear axisgreferentially angle (the angle betwednandk’, the reactant-approach and
parallel/antiparallel tdE). The use of different experimental product-recoil directions), anH. is the collision energy. In
geometries has enabled them to obtain experimental values fordetailed stereodynamical studies, however, it is convenient to

Every chemical reaction is a transformation. In the case of
atom—diatom reactions, it is usual to think about the transfor-
mation as being given by
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think about the chemical reaction as being described by the the scattering®) matrix obtained in reactive scattering calcula-
process tions. In the terms used in this article, tBenatrix is an intrinsic
guantity because it describes the connections (rigorously speak-
ing, transition probability amplitudes) tying reactants to products
rather than the reactants state considered in a particular study.
o . The S matrix does not depend on whether one is interested in
wherek, g, and their primed counterparts are labels associated \gactions involving rotationally excited reactants or not. Of
with _the rptatpnal polanzz_itlon moments that characterize the course, the values of observable properties (say, integral cross
relative directions of motion of reactants and proddéts? sections) cannot be calculated unless the reactants state (the
Because our interest here lies in reactant rather than producigyyinsic property) is determined. But the dynamical information
polarization, the values of the product-polarization labels are is in the intrinsic property (the scattering matrix), not in the
fixed atk' = g = 0 (this means that products are considered oytrinsic one (the reactants state).

regardless of their polarization state), and hereafter not explicitly Metaphorically speaking, one might say that intrinsic proper-

mentioned. Note also that we have ignored electronic and ties express what the reaction wants, whereas extrinsic properties

nuclear spins, which means that the methods and results to b&ypress what the reaction gets. Reaction cross sections depend
presented below will be valid only when the BC reactant is a 5 poth.

closed-shell molecule not susceptible to fast hyperfine depolar- 5 1 Reference FramesUnless otherwise stated, all of the
ization?2724:39°45 results below are referred to a center-of-magsframe in which
There are four main reasons for the replacement of magneticine 7 axis is parallel to the reactant-approach directiarzis
quantum numbers by polarization moments. Two are technical, {he scattering plane containing bdthand the product-recoil
and the other two are practical. The first technical reason is gjrection,k’, and they axis is parallel td x k'. We shall refer
that the mathematical description of the dependence of reactiony this xyzsystem of axes as the “scattering frame,” and use a
dynamics on spatial directions requires the extensive use of|owercaseq to represent the polarization moment components
angular momentum algebra, which is made easier by the gefined with respect to the scattering frame and lowerégase
introduction of polarization moment$2’Very loosely speaking,  andg; to represent the polar and azimuthal angles that describe
this has to do with the fact that polarization moments are always the direction of the reactant diatomic rotational angular mo-
explicitly related to all three spatial directions comprising the mentum vectorj, in the scattering frame. Similarly, the direction

xyzreference frame, whereas magnetic quantum numbers aref the reactant diatomic internuclear axis in this frame will be
explicitly related to only one spatial direction (the quantization rqiven by 6; and ¢r.

axis, 7). The second technical reason is that, because classical” \yhen dealing with possible experimental situations, we will
mechanics cannot deal with phases of angular momentum states,|so need to consider aflyZ“laboratory frame,” whose origin
it is not possible to formulate a complete quasiclassical theory coincides with the scattering frame but whose spatial orientation
of reaction stereodynamics in terms of magnetic quantum js fixed:; its explicit definition will be presented in Section 4.
numbers; if one wants to maximize the benefit from direct \we shall use an uppercas@ to represent the polarization
comparisons of quantum and quasiclassical results, the tWomoment components defined with respect to the laboratory
theories must be stated in similar terms. The first practical reasonframe and uppercas®; and ®; to represent the polar and
is that polarization moments relate to the results from experi- 5zimuthal angles that describe the direction of the rotational
ments regarding chemical stereodynamics more directly than angular momentum vectoy, in the laboratory frame.
populatl_ons and phases of magnetic states. The second pracycal We choose to represent the relationship between the two
reason is that, to some extent, polarization moments describefrgmes in terms of the rotation that takeginto XYZ(not the
directional effects in more intuitive terms (orientation and  rotation that takeXYZinto xy2 and represent the Euler angles
alignment of molecular axes and rotational angular mo- that define this rotation by, #, andy. It follows that anda
mentd® 20222446 47than magnetic quantum numbers. This is the  are the polar and azimuthal angles that describe the orientation
case at least for the first few orientation or alignment moments, of 7 in the scattering frame.
which at present are the ones attracting more attention. 2.2. Intrinsic Reactants PDDCS. The most important
The theory we present here is based on what we call quantities for our reactant polarization analysis method are the
“extrinsic” and “intrinsic” polarization moments. EXtrinsic  ,trinsic polarization moments we represent Bﬁ?’(@) and

polarization moments describe actual reactant preparation ok Th re. r ivel mplex and real versions of
schemes and quantify the anisotropies of the rotational angularsqi(e)' ey are, respectively, complex and real versions o

momentum and molecular axis distributions in the asymptotic the same thing, mutually related by
region where reactants do not yet interact. Extrinsic polarization
moments are a consequence of external circumstances (the
experimental setup) rather than the reaction itself; they have

ECD '6 .
A +BC(@, |,k @ —— AB(, |, K,q)+C (2

S{0) = H(-17S0) + S0

nothing to do with the collision dynamics. We might as well = (—-1)W?2 Re[quk)(O)], l=<qg=Kk

call them “prepared” polarization moments. (3a)
In contrast, intrinsic polarization moments describe the 1

reactive process itself. They quantify the dependence of the Sgk,}(é?) =—[(—-1)" sgk>(0) - S(,ké(e)]

reaction cross section on the anisotropies of the rotational iv2

angular momentum and molecular axis distributions of the <k
reactants. Intrinsic polarization moments are determined by the = (3b)
collision dynamics rather than by external circumstances (the
experimental setup). We might as well call them “dynamical” Ky — q®
polarization moments. So"(6) = So'(6) (30)

The distinction between intrinsic and extrinsic properties can These polarization moments quantify the dependence of the
be made clearer by consideration of a more familiar example: differential cross section (DCS) on the polarization of the

=(1)WV2ImsP®)], 1=q
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reactants. Maintaining a term already in 4&eye call them

the “intrinsic reactants PDDCSs,” where the acronym stands

for “polarization-dependent differential cross section”.
Complex polarization moments are best for mathematical

manipulations but are not directly associated with Cartesian

directions? or observable differential cross sections (the cor-

J. Phys. Chem. A, Vol. 109, No. 28, 2005203

Suppose that (as is done in this paper) one wants to study
the reaction dynamics in theyz scattering frame and that all
intrinsic properties are referred x9z If reactants are produced
in the laboratory with complex polarization momentsy,
referred to theXYZspace-fixed frame, then a frame transforma-
tion is required: one must use the values of the laboratory

responding operators are not Hermitian). Real polarization polarization momentsAY, to determine the values of the

moments are cumbersome for mathematical manipulations but

are directly associated with Cartesian directions and observabl

Hermitian). We therefore use this approach: derivations and
calculations are done with complex polarization moments, but

numerical results and figures are presented in terms of real

polarization moments.
As already mentioned, the labédsand q identify particular
rotational polarization moments of the reactants. The rank
identifies the particular type of multipole under consideration:
k = 0 for a monopolek = 1 for a dipole k = 2 for a quadrupole,
and so on up t& = 2j. The componenq identifies the spatial
direction(s) associated with each multipole. Each intrinsic
reactants PDDCSS&k)(G), guantifies the dependence of the
differential cross section on a particular type of reactants
polarization; the details of the particular directions and types
of polarization associated with each combinationkadind g
values wherk < 2 can be found in ref 18.
For future reference, we also note that the complex polariza-
tion moments satisfy the following relation:
[SP(O] = (—1)"s%6) @)
If, in addition, the distribution of internuclear axis is invariant
to reflection in thexz scattering plane, as in atendiatom
collisions, it holds that
3(0) = (-1 s (0) = C1sPEON )
which in combination with eq 3 implies that the only nonvan-
ishing real polarization moments are
keven: S ands{f,

1<g=k (6a)

kodd: S{¥, 1=q=k (6b)
We close this Section by stressing that the intrinsic reaction
PDDCS is an intrinsic property that gives information about

the reaction dynamics. Its numerical value cannot be directly

measured. To obtain numbers that can be measured (i.e.

scattering-frame polarization momentsy. The formula for

; ; ) : €this transformation is
differential cross sections (the corresponding operators are

k
=Y Dia . 7) AY (7)
==k

whereD(a,, 3, y) is a Wigner rotation matrix and, 3, andy

are the Euler angles associated with the rotations that take the
xyzscattering frame into th¥YZlaboratory frame (see Section
2.1). As is always the case in angular momentum algebra, one
must be careful with the conventions and definitions used.
Equation 7 is valid when (i) the rotation matrix follows the
conventions of ref 50 and (ii) the complex polarization moments
are defined as covariant components of the polarization tensor
(this is the definition we use throughout this work, see Section

3).

Real polarization moments can be obtained from their
complex counterparts by the use of expressions entirely
analogous to those in eq 3.

2.4. Observable DCSOnce the intrinsic reactants PDDCSs
and the (extrinsic) reactants polarization moments have been
calculated, one must combine them in order to obtain the
observable differential cross section. The formula required is

do

8
" (8)

Oiso %
= Zq(Zk +1)[s¥(O)]a¥

where d/dw is the DCS, andiso the integral cross section of
the reaction involving unpolarized reactants, in other words, the
reaction in which the spatial distributions of the rotational
angular momentum and internuclear axis of the BC reactant
are isotropic.

2.5. Meaning of Intrinsic Reactants PDDCSsTo further
clarify the information content of eq 8, let us consider the
particular case of unpolarized reactants. In this case, the extrinsic
reactant polarization moments are given by

observable reaction properties), one must take into account an

extrinsic property: the actual polarization of the reactants, which
we will consider before showing how observable differential
cross sections can be calculated.

2.3. Polarization of ReactantsWhen the directions of the

unpolarized reactantsag‘) = 0yo0q0 9
’and we have
do _ %0 g0
a0 = 22 S60) (10)

That is, the intrinsic reactants PDDCS{)(6), gives the

angular momenta are prepared prior to the collision, one must Product angular distribution of the reaction involving unpolar-

consider the actual polarization of the reactants. This is an
extrinsic property: instead of depending on the reaction
dynamics, it depends on external intervention.

The polarization of the BC reactant in reaction 2 is described
by a set of polarization moments that we denotesfyor a(f}

ized reactants. In other Wordsgo)(e) gives the probability of
observing reaction when the angle between the reactant-approach
and product-recoil directions & Note that in order to obtain

the integral cross section from eq 10, one must integrate it not
only over co¥ but also over the azimuthal anglg, hence the

when using the complex or real representations. Because thes@€ed for the 2 factor.

polarization moments are to be used in conjunction with intrinsic

What about the other intrinsic PDDCSs? Equation 8 shows

properties such as the one discussed in the previous sectionthat eachS{(6) quantifies the extent to which the corre-

the two must be defined with respect to the same referencesponding extrinsic reactant polarization mom

frame.

afft, leads to
a distortion of the differential cross section. Another important
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observation is that, when PDDCSs with> 0 are included, To understand this problem, one must start by realizing that
probability is not conserved: in general the correlation between tHeandk' vectors, as is always the
case for two-vector correlatiol$,is a function of one angle
fllsék)(g) d(cos6) = 0 (11) only: in this case, the scattering angt, This leads to the

familiar result that DCSs of reactions involving unpolarized
Extrinsic reactants polarization will, in general, lead not only '€actants are always independent of the azimuthal apgind

to a different shape for the differential cross section (i.e., to a that integration over this angle amounts to no more than
different product angular distribution) but also to a different Multiplication by a factor of 2. _
reaction probability and to a different integral cross section. The A complication arises, however, when one wants to consider
intrinsic reactants PDDCSs quantify the reaction sensitivity to 'actants polarization as well as the reactant-approach and

both effects. In short, they quantify the intrinsic stereochemistry produc't-recoil directions. This amounts to consideration of the
of the reaction. j—k—k' three-vector correlation, which depends on three

2.6. Renormalized PDDCSsAs just described, intrinsic angles?® There are two natural ways to choose the set of angles:

reactants PDDCSs allow us to calculate how product angular A AS {0, 0, ¢j}. (Hered is the angle betweek andk’,

distributions and reaction cross sections change with reactantsVhereas; is the angle betweek andj, andg; is the dihedral

polarization. They do not, however, express this in relative ar_1g|e specifying the location of the _plane containin_gpdj
terms. with respect to the reference, scattering plane containiagd

: Lo i ; k'.)
This point is better explained with an example. Suppose that
P P (%) ’ ) PP B. As{6,, 0, ¢}. (6 and0; as aboveyp is the dihedral angle
we calculate the value of a gives, (6), say S ("/2), and specifying the location of the scattering plane contairkrend
obtain 3.2. Does that mean that the alignment of the BC kPwith regs ect to the reference Iane%gntai imandi. Note
rotational angular momentum along ttedirection has a P b kngnd; .

dramatic effect on the reaction or only a minor one? As it turns thi[ntasure;e;)eorlﬁeC%'ginci;s Qfet thgszﬁ)rlr;e ?;u'jn r?]?istﬁeAn%)aticall
out, the value of the intrinsic PDDCS does not provide a direct 9 P ’ y

answer to this question. To answer it, we need renormalized equivalent, pra_lct|c_al_|ssues introduce a clear bias in favgr of
PDDCSs scheme A, which is indeed the one we have used so far: our

expression for the DCS, eq 8, is independentof

s<k>(0) The question is less easily addressed, however, when one
renormalized PDDCS—2 (12) wants to “reduce” the differential cross section describing the
s©e) j—k—k’ correlation to the integral cross section describing the

j—k correlation. This must be done by integration ogeand
The importance of renormalized PDDCSs comes from the fact ¢. But what differential cross section must be integrated, the
that they have well-defined ranges of allowed valtie$he one obtained with scheme A or the one obtained with scheme
closer the calculated values are to the limits (positive or B? The integration results are not equivalent.
negative) of the allowed ranges, the more sensitive the reaction The important point to note is that the DCS associated with
is to polarization effects. If renormalization of the PDDCS scheme A, the one of eq 8, does not depengromtegration
mentioned above leads to a small value (ﬂ&’(nlz)/sg))(:r/z) over this angle amounts toa simple multiplication by, ang
= 0.02) we can say that the reaction is rather insensitive to this 40€S not remove the azimuthal dependence on the dihedral
kind of reactant polarization. But if the renormalization leads angle,¢;. However, the DCS associated with scheme B (its
to a large value (say we are doing a classical calculation andMathematical expression is not included in this paper) does
obtain ng)(,,/z)/sgm(ﬂlz) = 0.97, a value very close to 1, the depend ong, which in this case is also the dihedral angle

upper classical limit for thik andq values8), then we can say ?hsso?ate% with atmmuthatl tasymmetlry. In;[tgglratlgn overz
that the reaction is very sensitive to this kind of reactant erefore does not amount to a simple multiplication by

polarization. To give meaning to terms such as “large sensitiv- and completely removes th'e az'm””.‘a' c_;lepend(_ance.
ity,” we need to ask ourselves: large relative to what? Thatis OU’ @nswer to the question of which integration should be

where the renormalized PDDCSs step in. The question they perfor_me.d is based again on prgctlc_al issues, and IS the
address is this:relative to the reactiity associated with following: both, because the resulting integral cross sections

unpolarized reactanfshow large or small is the reactivity one doLnot COfI.'lVE)(; th? S?‘rf]"e ;?formztl?nt and tgre beth rgeasurable.
can get by polarizing them? et us first deal with scheme A. Integration of eq 8 over cos

2.7. Intrinsic Reactants PP.To quantify the effect of ¢ andg yields
reactants polarization on the integral cross section, it is . 07*
convenient to introduce the polarization moments that we O_GisoZ(2k+ sy’ ay (14)
represent b)Sgk) and, again, maintaining a term already in use, d
call the “intrinsic reactants PPs” (the acronym stands for

. i a quantity we will refer to as thepeciallCS. The reason for
“polarization parameter”). They are defined by

the “special” qualifier is that the value @f, contrary to the
© 1w value ofo (t_he “ordinary” ICS to be discussgd .shortly), i§ not
S = f,lsq (6) d(cost) (13) completely independent of the product-recoil directidnThis
is because the determination &f although not requiring
2.8. Observable ICSsOnce the intrinsic reactants PPs and specification of the exact direction &f, does require specifica-
the (extrinsic) reactants polarization moments have been cal-tion of the location of the scattering plane containingndk’
culated, one can combine them in order to obtain observablebecause the dihedral angle associated with azimuthal asymmetry
integral cross sections. Before doing that, however, one mustis defined with respect to the scattering plane. Experimentally,
note that the introduction of reactants polarization leads to two the special ICS can only be measured indirectly, by integration
different possibilities regarding the definition of integral cross of a (directly measurable) differential cross section. It cannot
sections. be determined when product detection does not discriminate
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recoil direction. Another noteworthy point is that the special are the youngest of the authors of this paper (James Haigh) and
ICS does not express the “purg>k two-vector correlation the author of some of the most influential papers in the field of
because determination of the valuedofequires specification  stereodynamics, Dudley Herschbach. James has never met
of two angles §; and ¢;) rather than only one angle. Professor Herschbach. While going through the mandatory
From the experimental point of view, the integral cross introductory stereodynamics literature, James was impressed by
sections associated with scheme B are the more natural one$rofessor Herschbach’s seminal articles and also by the frequent
because they are truly independent of the product-recoil direc- praise of his work in articles by other people. James got curious,
tion. They can be measured directly (by product detection and asked co-workers what Professor Herschbach looks like.
irrespective of recoil direction) because knowledge of the Now we ask our readers: what would have been the best way
position of the scattering plane is not necessary. The formulato answer? To present James with an exhaustive list of

required for their calculation is anthropometric data (height, weight, etc.) or to show him a
portrait of Professor Herschbach? No prizes for guessing what

o= aiSOZ(Zk + 1)s af¥ (15) we did. Granted, an exhaustive list of anthropometric data might
have been more quantitative, but would not have been nearly

] as effective as the portrait.

(the complex conjugate symbol has been dropped because the The sjtyation is not too different with regard to chemical
polarization moments witlg = 0 are real). Note that the  reactions. Although PDDCSs and PPs are certainly the param-
difference betweerv and the special ICS of eq 14 is that  eters one needs to consider for a quantitative description of the
polarization moments with = 0 do not contribute to the value  reaction stereodynamics, a “portrait” of it conveys the overall
of o} in other words o does not convey dihedral information.  sjtyation in a much more effective and direct manner. So the
The reason is that the loss of information about the location of gestion we have to address is this: how can one directly portray
the scattering plane prevents one from creating azimuthally the stereodynamics of a chemical reaction? The answer is, by
asymmetric reactant polarizations and the information about theplotting the reaction’s intrinsic spatial distributions of inter-
sék) with g = O is lost. nuclear axes and rotational angular momenta.

Note also that the above discussion uses arguments exclu- |f the intrinsic polarization moments are known, then so are
sively drawn from the intrinsic distribution of angular momen-  the intrinsic spatial distributions of the rotational angular
tum. An alternative deduction can be made using the extrinsic momentum vectors and internuclear axes. Ndhese are
point of view. From this perspective, the azimuthal angle distributions that explicitly describe and graphically represent
defines the dihedral angle between Kke (x2) scattering plane  the dependence of the reaction dynamics on directions in space
and, in principle, any arbitrary, “external” reference plane. In |n our (admittedly fanciful) terms, these distributions are
particular, it is possible to refer the scattering frame to the actual portraits of the reaction stereodynamics, of which some
XYZlaboratory frame because the properties calculated on theexamples will be presented in Section 5.1.
former will depend on the relative orientation of both frames | et us first consider internuclear axis) distributions. They
as long as an extrinsic polarization exists. The dihedral angle are related to the polarization moment$by
between thexz and XZ planes iso.. Thereforewith respect to
the XYZ framgthe ¢ angle will be 2r — o. 3 K ok+1 .

Considering the relationship between the laboratory polariza-  P(6,, ¢,) = Z} z - - Sgk)[j()’ kO[jOLC, Oy, @) (17)
tion moments and those in the scattering frame given by eq 7 0 gk 4n
and substituting in eq 8, the expression of the DCS becomes a
function of the Euler angles that relate the scattering and the whereP(6:, ¢r) is the probability density function (PDF) that

laboratory frame. By integration of eq 8 over agbandg or a, directly describes the spatial distribution of the internuclear axis,
only those moments witly = 0 survive. By using eq 7 again, 6 andg; are the spherical angles that specify the direction of
eq 15 is recovered. vectorr in the chosen reference franig), kO|j0Care Clebsch

2.9. Meaning of Intrinsic Reactants PPs.By using a Gordan coefficients, anGy(6r, ¢r) are complex conjugates of
procedure analogous to the one in Section 2.5, we show thatmodified spherical harmonics. Note that in this formula we have

we must have used the intrinsic reactants PPs as the polarization moments,
but we might as well have used the PDDCSs, whether
©=1 (16) renormalized or not.

Rotational angular momentum) (distributions, in turn, are
and that the remaining intrinsic reactant PPs quantify the related to polarization moments 4y’
sensitivity of the integral reaction cross sections to the extrinsic
reactant polarization. 4k
We also note that in this case we do not need to define  Q(6;, @) = 20 Z
“renormalized PPs” in order to obtain the kind of relative k=0 g="k
information discussed in Section 2.6. As suggested by eq 16, L
our definitions imply that the intrinsic reactants PPs are Where theQ(6;, ¢)) notation indicates that the PDF we are

“naturally renormalized” and therefore convey relative as well dealing_ _With he_re is ap'opulation distributionrather than a
as absolute information directly. probability density function (see refs 46 and 47 for a discussion
2.10. Stereodynamical Portraits The PDDCSs and PPs we of the need for this distinction). Again, we have used the intrinsic
have just introduced are the parameters that quantify the reactiorf €actants PPs as the polanzatulj_n moments, but we might as well
stereodynamics. Quantitative parameters, however, are nothave used PDDCSs, renormalized or not.
always the best-suited ones, and certainly not the only ones tha .
matter, when what one is after is qualitative understanding. t?’ Calculation of PDDCS
The point we are trying to make can be explained with an  In the previous section, we showed that the central quantities
analogy. It involves a true story, in which the main characters in our theory are the intrinsic reactants PDDCSs. We have also

+1

$¥0j, kOlji [T(6;, @) (18)
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shown how other important quantities (renormalized PDDCSs, «®/gy — (27 1 s >y N Ao
polarization parameters, cross sections, and stereodynamicalSq ©) j(; fﬂp’ 0, 65, ¢3) Ci 0,,y) d(cos6) dery (21)
portraits) can be obtained once the PDDCSs are known. What ] ) ) ) ) )
we have not yet described is how tlﬁék)(e) values can The reaction differential cross section (which must take into

actually be calculated, and this is what this section is devoted accountan actual, extrinsic reactant preparation scheme as well
to as the intrinsic reactants PDDCS) is given by

The intrinsic reactants PDDCSs can be calculated with both o
guantum and quasiclassiqal methods. Quantum calculationg (weld _ ~iso 027 fj14ﬂp(9,9j, <;0,-) p(gj, ¢j) d(cosej) d(,vj (22)
assume them to be time-independent calculations or else timedw 27
dependent calculations capable of producing scattering matrixes ) ] ) o )
as their outp§8-59) describe the reaction dynamics intrinsically; whereoi_SO is the integral cross section of_the reac_tlon involving
the result of the calculation is a scattering matrix. This means Unpolarized reactants (which must be divided yiorderto
that intrinsic reaction properties can be obtained directly, without t@ke into account the fact that the differential cross section is
recourse to extrinsic properties (which in this case would be independent of), o(6;, ¢;) is the PDF describing the extrinsic

the density matrices defining actual states of reactants andr€actants polarization, and ther 4actor inside the integral
products). ensures its correct normalization.

The extrinsic reactants PDF can be expanded in a multipolar
series entirely similar to the one used for the intrinsic one, eq
20

As for quasiclassical trajectory (QCT) calculations, they are
carried out using a uniform distribution of the rotational angular
momentum or internuclear axis, without any polarization bias.
Of course, each individual trajectory is associated with given o Kk
initial and final polarization states, but the ensemble of _
trai . . . S o e p(6;, @) = Z

jectories spans a uniform, isotropic distribution of directions. &y o A
It is the analysis of the subset of trajectories tying given initial
and final rovibrational states of reactants and products that
provides the information with respect to the intrinsic propensity
of a given initial distribution of angular momenta to produce a
particular final state.

In this section, we describe the calculations as we actually do  Oiso 2k + 1)(K + 1)
did them and do not emphasize the similarities between the = — "5l a&”l (24)
guantum and quasiclassical descriptions; readers interested in do 2743 4 a
a presentation highlighting these similarities are referred to one
of our earlier papers, ref 18. where

We also note that we are now about to enter a part of the -
article that, although important for a rigorous justification of = (7 @) C (6. o . =
our theory and also for actual calculations, is not essential for ! 0 fileq(OJ, <;0,) qu(QJ' <;0,) d(cosQJ) d(,v]
an understanding of the kind of information one can obtain by
using it. Readers interested in the former are invited to read 2k+1
on, but those with less demanding interests may wish to move
on to Section 4.

3.1. Classical MechanicsThe classical description of the
problem we are considering here (the three-vegtok—k'
correlation) starts with the definition of the classical probability
density functionP(0, 6;, ¢;). This PDF (an intrinsic reaction
property) gives the probability of observing reactive scattering
from given reactants rovibrational states into given products
rovibrational states and at scattering an@levhen the initial
direction of the BC reactant rotational angular momentum is
the one associated with spherical angleandeg;. The classical
reaction PDF is dimensionless, normalized to unity

2k+1

a¥Cy(0,9)  (23)

where thea values are the extrinsic reactant polarization
moments introduced in Section 2.3. Inserting egs 20 and 23 in
eq 22, one obtains

4
S 6k’k5q’q (25)

Inserting this last equation in eq 24 finally gives us eq 8, the
expression for observable differential cross sections in terms
of the intrinsic reactants PDDCSs and the extrinsic reactants
polarization moments.

Now that the formal definitions have been presented, we turn
to actual numerical calculations. The procedure can be sum-
marized as follows. Each particular combination of reactant and
product rovibrational states is considered in turn, along with
the corresponding subset of trajectories. This subset contains
N,j»j trajectories, labeled by the indéx The values of the
scattering anglé®® and the polar and azimuthal angles that
define the direction of, 6, and¢”, are determined for each
1 o a1 of the N,j,j trajectories. This information is used to calculate

f_l f; f_lpr(ei 0;, ¢;) d(cosb)) dg; d(cost) =1 (19) the values of all of the modified spherical harmonics of interest

for each trajectory, and then the trajectory-specific values are
and as such can be expanded as a series of spherical harmorveraged over thal,;,; reactive trajectories.
ics80.52in the form In practice, this is done by expressing the PDDCSs as a series
of modified spherical harmonit%52

S e 2kH1 1
P. (0,6, ¢) = go qzk? Sy (0) Cu(6;, @) (20) sg”(e) = Z (2K, + 1) ia C (0. 0) (26)
ki=Tq|
where thef-dependent expansion coefficients are the intrinsic
reactants PDDCSs introduced in Section 2.2.
By using the orthogonality of the spherical harmonics to invert .
eq 20, one gets the following expression: 5;121 - [Cqu(g' 0) qu(ej’ (pj)[j

where theﬁjg coefficients are given by
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Nyjurj _ o the DCS over product helicities, (ii) that we are assuming the
~— Y C, _q(G('), 0) qu(G-('), cpj(')) (27) reactants to be in a well-defined rotational energy level so that
o 1= ' the only coherences playing any polarization role are those
) among different helicity substates, and (iii) that the DCS formula
The PPs are evaluated'és mixes intrinsic properties (scattering amplitudes) and extrinsic
Ny ones (reactants density matrix).
® — WM @) Using the expansion of the reactants density matrix that is
S = Gl @)= N. '_,;qu(e' 4 (28) the quantum analogif&*®47 of the classical expansion of eq
avl 23, we get
As above, the brackets indicate the averaging over the whole 3K o1
set of trajectories associated with the chosen rovibrational states : ® .
of reactants and products. €ylpl jQ,1= gquk 2i+1 ag 1€y, kgl jQ,0 (31)

One more remark is needed before we conclude our presenta-
tion of the quasiclassical theory. Attentive readers may have |ntroducing this expression in eq 30, one obtains
noticed that the PDFs used in eqs 20 and 23 do not have the

same form as the ones used for the generation of the stereo- do 3 Kk .
dynamical portraits showing the intrinsic spatial angular mo- —= 20 z (2k + 1)[Ug‘)(0)] a‘(qk) (32)
mentum distribution (eq 18). The former are infinite series do &&=k

involving no Clebsch-Gordan coefficients; the latter is a finite

series involving ClebschGordan coefficients. The reason is Where

this: egs 20 and 23 are purely classical expressions used in a .
classical calculation. Equation 18 is a quantum-mechanical ®rona* N [1€2,, kof j€2,0
expression, used to turn the classical results into quasiclassical [Ug (0)] = fQ’Ql(G) fQ’Qz(g) T
ones by forcing onto them a quantum mechanical restriction QR J

(in this case, a restriction of the extent to which the exact
direction of an angular momentum vector can be specified, see . . . o
refs 46 and 47). In a sense, this is analogous to the “boxing” for the DCS (eq 8),(k)|s not quite therg yet,. the qllf)antltles
procedure used to associate specific quantum numbers to'€Presented here byy’(6) are not the dlmenS|onI_e§;,‘q Q)
molecules whose energy levels are not quantized in a classicalalUes appearing in eq 8. To obtain that expression, we must

Equation 32, although rather similar to the desired expression

calculation. multiply the right-hand side of eq 32 by

3.2. Quantum Mechanics.The starting point of our deriva- o
tion of the quantum mechanical expression for the reactants Jiso 27 _ 1 (34)
intrinsic PDDCSs is a scattering matrix in the helicity repre- 27 Oigo

sentation, the one most naturally adapted for the description of

the j—k—k' vector correlatiod? Complete specification of a ~ where oiso, the integral cross section of the reaction for an

particular element of this matrix requires a notation such as isotropic distribution of rotational angular momentum of the
o mijer With the various indices indicating the total energy reactants summed over product helicities, is given by

(E), total angular momentundy, projection M) of J on a space- .

fixed axis, Z, and the arrangement, vibrational, rotational and _ J 2

helicity quantum numbers for the reactardsy, j, andQ2) and Tiso = @ + l)kiz JZQ(ZJ + 1)|SJ'Q',JQ| (35)

products &, v/, j', andQ'). Because th& matrix elements are n

independent oM and the formulas used in this article only

require implicit use of the energy, arrangement, and vibrational as the reader can check by integrating eq 30 overficasd

labels, we simplify the notation tSﬁQ,JQ. while using
Using this simplified notation, we can write the scattering 0o o
amplitude a% i 2

1
foa(0) = e Z(ZJ +1) dyo®) Saje (29 This finally gets us to eq 8, which in the quantum case must be
Kin used in conjunction with the following expression for the

. . . intrinsic reactants PDDCSs
where d,,(0) is a reduced rotation matrix arigh the wave-

number associated with the incoming (reactants) plane wave.

The differential cross section, allowing for an arbitrary
reactants polarization (and therefore arbitrary coherence between
the possible reactant helicities), is related to the scattering, here the ©
amplitude by’

do o 19:9'91(9) P (O)0lel 120 (30) foa(®) = (38)

2 ;(zJ +1)IS)g ol 1
J

[SPON = Y foa,0) Fira (0712 kaliR,0 (37)
Q'€ Q,

scaled” scattering amplitudes are given by

whereljiQ1]p|jR2L0s an element of the rotational-space density
matrix of the reactants.

Readers should note three points about this formula, namely, The formulas above, besides completing the derivation of the
(i) that we are disregarding product polarization and summing results necessary for the use of our theory in its quantum-
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Scattering frame Laboratory frame

L e

Figure 1. Spatial distributions of the interatomic axis, and the

rotational angular momenturji,of a diatomic molecule in § =2, m Figure 2. Scattering }(_yz) and laboratoryXY2) frames. _
= OUstate referred to the laboratory frame€yZ

I /

mechanical version, justify our choice of notation for the Polarization moments, which when referred to XieZlabora-

intrinsic reactants PDDCSs. These are obtained by nothing moretory frame we represent b)) (see Section 2.1). In the case
than a transformation of the scattering matrix, and one might considered here, the only nonvanishing moments are those with
argue that they are no more than visualizable versions abthe k=0, 2, or 4 andQ = 0, and they take the values

matrix that make the stereodynamical information explicit. We

would agree with that remark, and that is why we chose to (0) — (2 — _ 2 4 — \/2
® A =1, A \/; A =F4/5  (39)
represent them b$,’(6).

(As appropriate for an experiment, the values above are
4. A Possible Experiment guantum-mechanical. The corresponding classical values are
AD =1, AP = —Y,, and A = 3g.)

This section describes what we believe to be a challenging  To obtain the extrinsic reactants polarization moments in the
yet feasible crossed-beam experiment that could be used to teskyzscattering frame, all one has to do is to use eq 7. It leads to
our theoretical predictions and more specifically those regarding
the role of D alignment in the dynamics of the # Do(v =0, al? = Dig(e, B, 7) AY = C (B, @) AP (40)

j = 2) reaction.

In Section 5, we will show that theory predicts Blignment Note that because the distributions we are considering have
to have a dramatic effect on the collision outcome and that this cylindrical symmetry around and therefore all nonvanishing
effect will be clearly visible in differential cross sections, integral Ag‘) moments hav& = 0, the Euler angler does not play any
cross sections, and product state distributions. Because theole in the transformation and can be arbitrarily chosen. The
experiment we propose can lead to the measurement of all ofonly Euler angles required aceandp, the azimuthal and polar
these quantities, if successfully carried out it will be capable of angles that specify the direction of the laboratory axisin
unambiguously demonstrating (or refuting) the rather striking the scattering frame. Figure 2, in which for reasons that will

theoretical predictions. soon become clear, we have identified the direction of the

In simple terms, the experiment consists of the following: laboratory axisZ, as the direction of the electric field vector,
to place the molecules in the;beam in thdo = 0,) = 2, m E, presents a graphical illustration of how the Euler angles are
= OCstate, where the magnetic quantum number is determineddefined and how the angles specifying the direction of the
with regard to a laboratory-fixed quantization ax&s, whose alignment axis and the angular momentum vector are defined
direction can be chosen. This amounts to preparip@ B 0, in the scattering and laboratory frames.

i = 2) molecules whose interatomic axis is aligned parallel/  The preparation of thg = 2, m = OUstate can be achieved
antiparallel toZ and whose rotational angular momentum is by pure rotational Raman scattering by selecting the right pump
aligned perpendicular td, see Figure 1. (This corresponds to and Stokes laser frequencies for stimulated Raman scattering
positive axial alignment and negative rotational alignment. Note in a cell of D,. By excitation via theS(0) transition from B(v
also that the distribution depicted in Figure 1 isxact not =0,] = 0), a considerable population ot@ =0,j =2, m=
obtained with recourse to the vector model or some other 0) can be produced quite effectively by setting the polarizations
approximation; see refs 46 and 47 for an explanation.) By of the stimulated Raman pump and Stokes lasers parallel to each
varying the direction of the laboratory axig, one varies its other. The§(0) transition results in the largest;@lignment
direction with regard to the scattering-frame vectarand, if that does not depend on the line strengths. The procedure
the experiment involves angle-resolved product detection, alsoproposed here is very similar to that used by Kandel &1 ial.
with regard tok’ and therefore with regard to the scattering their study of the CH- HD(»v = 1, j = 2) reaction. Sitz and
plane (the plane containirgandk’). Given that the laboratory ~ Farrow have used a similar procedure to produce aligneid N
axis, Z, is also the axis with regard to which the Bolecules the v = 1 statef®
are aligned, changing the direction Bfwith regard tok and Associated with thg = 2 rotational state of Pare nuclear
possibly k' amounts to changing the ;Dalignment in the states with total spif = 0 or T = 2, which can in principle
scattering frame, and this is the basic idea of the experiment.lead to very strong hyperfine depolarizati®&n243%-45 This
Some of the technicalities are discussed further below, but first effect, however, is not expected to be significant under the
we will briefly reconsider the problem of how to express the experimental conditions considered here. The reason is that
laboratoryr andj distributions in the scattering frame. collisions will occur within nanoseconds of reactant prepara-
The first thing to consider is that the axial and rotational D tion but hyperfine depolarization will only occur in a micro-
polarizations are both completely described by the molecular seconds time scale. Justification of this claim requires
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consideration of the largest separation betweefj B- 2) we call them the “intrinsic,” “practical,” and “min-max”
hyperfine energy levels (185 kHz, see ref 66) and of the fact approaches. Each of them has its own particular advantages,
that the time scale for hyperfine depolarizafibt-“°can be no and it is likely that stereodynamical analyses will be easiest
shorter than the reciprocal of that value, that is, no shorter thanwhen all three are combined.

5 us. This result is, of course, confirmed by detailed calcula-  To illustrate the potential of each of those approaches, we
tions43 have obtained numerical results, both quantum and quasiclas-

To minimize the presence of unpolarizeg(D= 0, = 2) in sical, for the benchmark H- D, reaction. More specifically,
the beam, one can expand pur®, through a nozzle cooled we have considered the
to liquid nitrogen temperature. This is known to produce more
than 95% of D molecules in ther = 0, ] = 0 state. Although, H+Dy(v=0,j=2)—HD(,j)+D (46)
at best, only 50% of the Pmolecules can be excited intp=
2, m = O[] the data acquisition can be done on a shot-to-shot
basis with the excitation laser on/off or varying the polarizations
of the pump and Stokes lasers to be either perpendicular or
parallel.

Ideally, the experiment will be carried out in a high-resolution
crossed molecular beam apparatus, similar to those used b
Welge and co-workeféand by Yang and co-workef8with a
well-defined scattering plane. By varying the direction of the
polarization vectork, with respect to the relative velocity vector
in B and the scattering plane m, one can achieve different
][anctant po]anza‘uons in theyz fra”.‘e- Results from tlme-of-. possible experiment we have described in Section 4.

ight detection of the products at different laboratory scattering . .
angles can be transformed into the center-of-mass system to We must stress, however, that the main purpose of this
obtain state-resolved differential cross sections and angle-recoilprese.mat'on is not to allow for a deta_||ed_ an_aIyS|s (.)f the
velocity polar maps. Moreover, by integrating the triple DCS experiment or even _Of the role oleipo_lanzauon In reaction
(polar maps) in scattering angle and velocity, the special integral 46. Instead, our main purpose hgre IS to.prowde |IIustrat|ye
cross section could be determined for each geometry with examples of the kind of Che!“'c?" information one can obj[aln
different 8 anda angles. by using the r_ea(_:tants poIarlzat|o_n theory we have dr_escrlbed.

We conclude this section by noting that the formulas 5.1. The Intrinsic Approach: Insight and Understanding.

necessary for the theoretical caiculation of the cross sections'/N€n one wants to focus on the reaction stereodynamics itself
that can be measured in this experiment are rather than on a particular reactive process, the most natural

way to approach the problem is to use the intrinsic approach

process at collision energies upEgy = 1.7 eV. The dynamical
calculations, time-independent quantum reactive scattering and
guasiclassical trajectories, both run on the BKMP2 potential
energy surfacé® have been described in earlier articles, and
for this reason we do not repeat the descriptions here. Readers
Ynterested in the details of the quantum or quasiclassical
calculations are advised to consult ref 59 for the former and
refs 18 and 60 for the latter.

Besides choosing a particular reaction, we have selected our
examples so that they highlight what can be achieved with the

do? o described here. In the terms of the metaphor we have used in
e (2k+1)[sgk)]* qu(ﬁ. a) Agk) (41) the b_eginning of Sectio_n 2, in the intrinsic appro_ach one
do 2743 examines what the reaction wants rather than what it gets.

In the intrinsic approach, the extrinsic factor (the actual

s . y S o :
og — OiSOZ(ZkJ‘_ 1)[53 )] qu(ﬁ, o) Ag) (42) polarization of reactlants) |s_|gnored alt_o_gt_ether. The questions
5 one asks are these: what is the sensitivity of the reaction to
reactants polarization? What polarizations are preferred? How

B K K i ic i i ics? ' i
0P =03 (2k+ 1)9 C o8, 0) AY (43) anisotropic is the reaction dynamics? What is toerelation
between the reactants polarization and reactivity?

. . _ _ The main advantage of the intrinsic approach is that it leads
These formulas are obtained by the insertion of eq 40 in eqgs 8,to clear pictures of the reaction mechanism itself, some of them

14, and 15, respectively. Note that, contrary to Eﬁﬁespecial of a rather intuitive nature. These are the “stereodynamical
ICS, thes # ICS is independent ad. The mathematical reason  portraits” described in Section 2.10.
for this is that the value o€(8, o) is independent of; the How does it work? The key idea has already been discussed

physical reason has been discussed in Section 2.8. Note alsgSections 2.5 and 2.9): the intrinsic reactants PDDCSs and PPs
that, because this experiment involves &lignment but not  quantify what the reaction wants. In less anthropomorphic terms,
orientation (the only nonvanishing extrinsic polarization mo- they quantify the correlation between the reactants polarization
ments are those witk even, see eq 39), one can restrict the  and the differential and integral reaction cross sections. Put in

ando ranges to yet another way, the intrinsic reactants PDDCSs and PPs are
. the polarization moments of the reaction itself, rather than the

0° < f =180 (442) polarization moments of actually existing reactants. And if we
0° < o < 18C° (44b) know these intrinsic p(_)larl_zanon moment_s, then we can use them
to plot the corresponding internuclear axis and rotational angular

and that the3 range can be further reduced to momentum distributions.

Figures 3 and 4 show some of these portraits, obtained

0°=p =90 (45) with quantum polarization moments. In each of them, the

left column shows “molecular axis portraits” (plots of the
intrinsic dependence of the reaction on the direction of the
internuclear axis of the P reactant), whereas the right
column shows “rotational portraits” (plots of the intrinsic
There are three ways in which one can use the theory dependence of the reaction on the direction of the rotational
described in the previous sections. For reasons explained belowangular momentum of the JLreactant). Figure 3 shows the

when theo-dependence is averaged out.

5. lllustrative Examples
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Molecular axis portrait Rotational portrait Molecular axis portrait Rotational portrait

0=8°

Figure 3. Stereodynamical portraits revealing the chemical shape of

reaction 47 aEcq = 1.306 eV withj' = 5 (top) orj’ = 10 (bottom).

The molecular axis portraits in the left column show the preferred
distributions for the interatomic axis of the, Peactant, whereas the

rotational portraits in the right column show the preferred distributions # = 11°
for the molecular rotational angular momentum. For the sake of clarity,

the axes have been displaced from the center of each of the figures.

See Section 2.1 for the definition of tixgz scattering frame.

results integrated over the scattering angle for the

H+Dy(v=0,j=2)—~HD(/=0,j) +D (47)
Figure 4. Stereodynamical portraits revealing the chemical shape of
. - . reaction 48 aE.y = 1.306 eV and witld = 4° (top), 0 = 8° (middle),
reaction withj" =5 orj’ = 10 and aEq = 1.306 eV, whereas 4 g = 11° (bottom). The molecular axis portraits in the left column

Figure 4 shows)-dependent results for the show the preferred distributions for the interatomic axis of the D
reactant, whereas the rotational portraits in the right column show the
P P preferred distributions for the molecular rotational angular momentum.
H+Dy(v=0,j=2)—~HD(s=0,'=0)+D (48) The scattering anglé?, between the reactant-approach and product-
recoil directions is the angle between the vectoes zandk'. As in

reaction obtained with = 4, 8, or 1 and at the same collision ~ F9ure 3, the axes have been displaced from the center of each of the
energy. In other words, Figure 3 shows tR&;, ¢) and figures. See Section 2.1 for the definition of tkyz scattering frame.

Q(6;, ¢y) functions obtained through use of the intrinsic PPs as
the polarization moments in eqs 17 and 18, whereas Figure 4
shows theP(0, 6, ¢;) and Q(6, 6;, ¢;) functions obtained
through use of the intrinsic renormalized PDDCSs as the
polarization moments in eqs 17 and 18.

In our opinion, pictures such as those in Figures 3 and 4 give
the best possible representations of what back in 1990 L&vine
called the “chemical shape” (as opposed to “physical shape”)
of a chemical reaction and as such fulfill one of the long standing
dreams of chemical reaction stereodynamics: to determine the
“shapes” of atoms and molecules perceied by each other

bending energy of the collision complex in the transition state
region, although of course a thorough justification of such a
claim would require a more detailed analysis, which is not the
purpose of this article.

Useful as they are in terms of qualitative understanding, the
stereodynamical portraits presented above are not suitable for
guantitative analyses. In quantitative terms, the key ingredients
of the intrinsic approach to reaction stereodynamics are the
intrinsic polarization-dependent differential cross sections (PD-
DCSs) and polarization parameters (PPs) introduced in Sections
when they take part in a reactive collision. 2.2 and 2.7, .WhiCh are the numerical parameters behind the

Figures 3 and 4 also justify our use of the words “insight” ster'eodynamlcal portraits presented above. )
and “understanding” in the heading of this section. A brief ~ Figures 57 show the PPs and renormalized PDDCSs
consideration of each of them does give significant insight into c@lculated again at thig:o; = 1.306 eV collision energy. Each
the reaction stereochemistry and also facilitates understanding®f these pictures includes both quantum and quasiclassical data,
of its mechanism. For instance, Figure 3 leads very naturally Which allows for a quantitative assessment of the level of
to the hypothesis that the amount of rotational energy of the @greement between the two calculations.

HD product in reaction 47 is related to the collision geometry, ~ Figures 5 and 6 show the real PPs of rdnk 1, 2, or 4,

with head-on reactive collisions leading to little product obtained for reaction 47 as a function of the HD product
rotational excitation (cf. th¢ = 5, top row of Figure 3) and  rotational state. As can be seen, the agreement between the
side-on reactive collisions leading to larger product rotational quantum and quasiclassical PPs is impressive. Furthermore,
excitation (cf. thg' = 10, bottom row of Figure 3). One might these Figures show that tf%z} polarization parameter is the
then speculate that this effect has to do with the amount of most relevant one for the differences found between the
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Figure 5. QM (solid line, solid circles) and QCT (dashed line, open Figure 6. As in Figure 5, but withk = 4 andg = 0—3.

circles) intrinsic polarization parameters of reaction 47 Witk 1, 2

at Econ = 1.306 eV as a function of the HD product rotational state. as the one found for the polarization parameters. As one might
The ranges of the vertical axes coincide with the allowed quantum expect, the more detailed reaction properties (the PDDCSSs)
ranges of these parameters for 2. constitute a more stringent test of the accuracy of the calculations
than the less detailed ones (the PPs).

Exam of the intrinsic reactant PDDCSs afedependent
stereodynamical portraits raises an intriguing question: why
does the stereochemistry change so much, and in not such a
simple fashion, with the scattering angle? (Here we are not
talking about the fast quantum oscillations discussed above but
rather about the broader ones that are seen in the quasiclassical
e - . as well as in the quantum data.) Here one might, for instance,
are indicative of the alignment of the rotational angular gpecyjate that the observed changes are related to the charac-
momentum vector W'ﬂ; respect to the quantization a&ishe  eristics of the “bottleneck” states of the collision complex in
observation that the? parameter is so important for the  the transition-state region. Yet another example of how intrinsic
reaction dynamics strongly suggests that experiments involving stereodynamical properties can give insight and be relevant for
reactant rotational alignment are likely to shed considerable light e understanding of reaction mechanisms but also yet another
on the reaction dynamics. The possible experiment we describedques»[iOn we shall not consider in this paper.
in Section 4 is precisely of this kind, and we will further explore 5.2. The Practical Approach: Experimental Control
the impact of reactant rotational alignment on measurable pqggipilities. In Section 5.1, we have only examined intrinsic
quantities. stereodynamical properties obtained without consideration of

Figure 7 shows the intrinsic renormalized PDDCSs of rank actual reactant polarizations. Although that method can give
k = 2 and componeng = 0 as a function of the scattering understanding and insight into the reaction stereodynamics, it
angle for selected HD( = O, j') product states. Before cannot predict the outcome of practical situations and actual
commenting on these results, one must remember that thesexperiments. To deal with these, one needs the practical
renormalized PDDCCs are not indicative of reaction probability approach we now describe.
but rather of the preferred reactant polarization at each scattering The “practical approach” is largely a trial-and-error procedure,
angle. Because the reaction probability itself does change within which reaction outcomes are determined with different
scattering angle, one must take the product angular distributionsreactant polarizations, and the corresponding results are com-
into account when analyzing the renormalized PDDCSs.

Formation of HD¢' = 0, ' = 1) is dominated by backward
scattering, but there is also significant forward scattering.
Consideration of Figure 7 shows that the agreement betweenz
quantum and quasiclassical data, although quite good in thegp 00ff
backward scattering region, is not so good in the forward z -02
scattering region, where the QCT calculations fail to reproduce §e 04

0 2 4 6.8 10 12 14
]

stereodynamical portraits of reactions leading to HB{(5) or
HD(j' = 10) (see Figure 3). The? parameter is the one
whose value changes the most betwgen5 andj’ = 10, going
from rather negative gt = 5 (its quantum value is-0.18,
whereas the negative linitfor j = 2 is —0.53) to rather positive
atj’ = 10 (its quantum value is 0.16, whereas the positive it
for j = 2 is +0.53). Because moments wikh—= 2 andq = 0

0.4
0.2

v'=0,j'=4

_the pror_wounc_ed osc_illations of the quantum PDDCS. T_hi_s 03560 9'0“";;0 150180 0 30 80 80 120" 150 180
information is interesting, and suggests a purely quantum origin — ————————
for the observed oscillation, which is also seen in the stereo- %4 v=0=8 041 v'=0,i'=10
dynamical portraits of Figure 4. One might, for instance, attribute § 0.2 0.2 s ;
the oscillation to an interference effect, similar to that found “Q: F0Y0) S Auc S W 400 NSNY < 0.0 L, y
by Althorpe and co-workef3% in their plane wave-packet £ 4, 02/ ¥
analysis of this reaction; the interference might be between near- @ 04 04
side and far-side reaction mechanisihs. e R
In the case of the other product states included in Figure 7, 0 si‘;uer?ﬁg afg.e (Li‘;r;;‘} 1800 si‘;ue,‘?ﬁg a.?;e (Li‘;r;i‘i 180

the dynamics is dominated by forward and/or sideways scat- jgyre 7. Intrinsic renormalized PDDCSs of rakk= 2 and component
tering. In these regions, the agreement between quantum andy = 0 of reaction 46 inta’ = 0, = 1, 4, 8, or 10 aE. = 1.306 eV
quasiclassical data is generally good, although not as quantitativeas a function of scattering angle.
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Figure 8. Excitation function of the H+ Da(v = 0, ] = 2) reaction 0.12

for different D, alignment directions. The curve labeled as iso
corresponds to the situation in which 3 unpolarized and the initial

j vector is therefore random. The borders between the white and gray

areas represent the maximum and minimum possible value$ ahd

were obtained with the min-maximization procedure described in R 0.08
Section 5.3. oL

pared. The idea is to examine the extent to which the reaction =
outcome (say, its cross section or the product state distribution) 0.04
can be influenced by actual reactant polarization schemes and
the extent to which one can use reactant polarization to
(passively) control the reaction.

As described in Section 4, the proposed experiment involves
D, alignment with regard to the reactant-approach direction
and possibly the product-recoil direction as well. With this in Figure 9. Integral cross section of reaction 47By = 1.306 eV as
mind, we have restricted our exam_ples to alignment effec_ts: It a ?unction of tghe product rotational state for difh”erenj &lignment
should be noted, howgver, that this is .not a necessary relsmc'['on;directions. The top panel shows quasiclassical results, and the bottom
we could have easily included orientation effects in our panel shows quantum mechanical ones.
theoretical examples.

In the experiment we have proposed, the alignment direction reaction cross section on the reactant alignment is clear:
is determined bys and o, the polar and azimuthal angles reactivity is enhanced by head-on collinear collisiofis<( 0°,
scattering frame of reference, see Sections 2.1 and 4). Wecgjjisions 8 = 90°, r perpendicular tk andj parallel tok),
consider here cases in which both of these angles are specifiedynq |argely unaffected by alignment along the magic angle

(thisis appropr.iate for experiments involving angularly resolved (which is equivalent to using equal amounts of collinear and
product detection and therefore for measurements of DCSs an%erpendicular alighment). Although this is not exactly an

special ICSs), and also cases in which ofilys determined,
whereasy is averaged out (this is appropriate for measurements
of ordinary ICSs).

The values we have considered for the polar angle are

0.00

unexpected result for the reaction we are considering here (the
H + D, reaction has long been known to be collinearly-
constrained), one should note that Figure 8, besides revealing a
preference for collinear collisions, alspantifiesit, showing

B=0° 5474 or 90° the extent to which the reactivity can be controlled by selective
reactant polarization.
(B = 54.7# is the so-called “magic angle” at whidky(cos5) The effect of B alignment on product rotational state
= 0.) When considering specific values for the azimuthal angle, djstributions atE.,; = 1.306 eV (the HD vibrational state i$
we have used = 0) is clearly seen in Figure 9, which shows quasiclassical

(top) and quantum (bottom) data, obtained with the s#@ne
values considered above. The two data sets are in very good

When analyzing the data presented below, it will be useful to @greement, indicating a clear effect: collinear collisiofis<
remember that the Onteratomic axisr, and rotational angular 0°) lead to a colder product rotational state distribution, whereas
momentumj, are respectively aligned along or perpendicular Side-on collisions £ = 90°) make it hotter, and magic-angle
to the direction specified bg anda. alignment again leads to results similar to those obtained without
Figure 8 shows quantum data illustrating the effect of the reactant polarization. Consideration of these results, along with
polar angle,3, on the excitation function (the integral cross the stereodynamical portraits of Figure 3, suggests that low/
section,o #, summed over all product states, as a function of highj’ values are associated with collision with low/high impact
energy). The solid line corresponds to the usual excitation parameters and thus with transition states with lower/higher
function (isotropic case, nofpolarization), whereas the others bending vibrational energy. Note that the integral cross sections
include the effect of B alignment. The dependence of the for formation of the product states considered in Figurg 3,

o =045, 90° or 180
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LA B B B Inspection of Figure 10 shows that head-on collisions (those

L QCT | favored byp = 0°) lead to an angular distribution that, compared
0.25 ' o 0,=e- g . . . . .
| V=0 p=54.74 a=180-"""~-, B=Q_-: to the one obtained in the isotropic case (that is, when the
020k ;s Moo collision involves unpolarized reactants), is more focused on
NQ L K ')." | the backward scattering region. However, side-on collisions
< 015 |- ‘.,’. ------ AN N (those favored by = 90°) enhance sideways scattering,
e | g ", 180 N, whereas alignment along the magic angle{ 54.7%) leads
B o0k & e, .3 to an intermediate result.
=3 L / o T T S Also quite evident in Figure 10 is the importance of the
b ’.” —90 a—o . .
T 005 At - azimuthal angleq, whose value can have a dramatic effect on
2z B=54.74° a=45°" ] the observed results. This is illustrated by the curves obtained
0.00 L— i P T I B with f = 54.7#, o = 45° or with § = 54.7#4, o = 18C:
0 30 60 90 120 150 180 although the former polarization direction leads to a DCS that
i L B B AL L has a similar shape to but is less intense than the DCS obtained
. N . . . . oge
0.25 L QM B=54.74° =180’ '\ B=0%- with isotropic reactants, the .Iatt'er Ieads to a very significant
| ; . P enhancement of the DCS, which is particularly pronounced near
= 020 : N 6 = 115°. Note thato. = 0° anda. = 180° both correspond to
AR | ' '/\‘ | situations in which the internuclear axis is on or near the
< 0.5 | POl RN scattering plane containiny and k', but that the respective
3 | Iy S iSO~ | collision geometries differ, with the Dinteratomic axis being
B 010 3 . _.-] tilted along the quadrants of the scattering frame where,the
[-N I~ o e, .- - . . . . .
o° I 7 ‘/,f,- ] product is either negative or positive. Valuesooin the 45 <
D 05 . [l /B=90 a=0 i o < 135 range, however, indicate the predominance of
TR i o _Ap0 collisions in which the B interatomic axis is close to perpen-
M\ LA B=54.74° a=45 . : : :
0.0 NhemgBsE=—="~"" T dicular to the scattering plane. The fact that a large increase in
) 30 60 90 120 150 180 the DCS is observed fax = 18(° indicates that the reaction is

scattering angle (degrees) predominantly coplanar; that is, the scattering plane and that
. , ) i ) containing the three atoms remain coincident in the course of
Figure 10. Differential cross section, summed over product rotational

states, of reaction 47 &, = 1.306 eV and for different Palignment the reaction. . . .
directions. The top panel shows quasiclassical results, and the bottom We present further illustration of the importance of the
panel shows quantum mechanical ones. azimuthal angleq, for the observed differential cross section
in Figure 11. It contains quantum state-to-state results for
5 and 10, respond to reactant alignment in opposite ways, with reactions leading to HR{ = 0, j' = 0) scattering in the
one being enhanced when the other is diminished. backward (top) and forward (bottom) scattering regions (the
Comparison of the rotational distributions of Figure 9 with DCS of such reactions in the 30 6 < 120° region is
the polarization parameters of Figures 5 and 6 is also illustrative. invariably very small); the combinations gfanda values are
The first thing to note is that, because the product recoil direction the same ones used in Figure 10. Besides confirming the
is not specified, we have cylindrical symmetry around the sensitivity of the product angular distribution to the value of
reactant-approach directioki, as shown by egs 15 and 43, the the azimuthal angley, Figure 11 shows that the variation can
only polarization parameters that contribute to the integral cross be significant even within strikingly small scattering angle
section ares®, &2, ands(; of these, &2 is the one that is  intervals (something that, from the point of view of intrinsic

largely responsible for the polarization effects (see Section 5.1). properties, was illustrated by the strongly contrasting stereo-

As shown in Figure 5, this PP is quite negative jfos 5 and dynamical portraits of Figure 4). Let us compare, for instance,
quite positive forj’ 2z 10, changing sign aroung = 8. No p=0°tof = 54.74’, o= 180 the first polarization direct_ion
surprise, then, that preparation of reactants Vg@ﬁ = — leads to DCS maxima &= 0° and@ = 18(° and to scattering

0.535, 0, or 0.267 (these are the quantum values of the extrinsichodes near¢ = 6° and 6 = 160°, whereas the second

polarization moments corresponding to reactant alignment alongPolarization direction leads to a DCS with scattering nodes
B = 0, 54.74, or 90, respectively) lead to increasingly hot ~Where the first had maxima and with local maxima where the

product rotational state distributions. first had nodes. In our opinion, it is truly remarkable that such
We now turn to the effect of reactant polarization on Contrasts can be observed within such small scattering angle

differential cross sections, which requires us to also consider intervals.

specific values for the azimuthal angée, This further increases Another way of visualizing the effect of the,alignment

the stereospecificity of the experiment and can have a dramaticdirection on the reaction we are considering here is by using

effect on the ability to control the system reactivity. scattering angle-recoil velocity polar maps such as the ones in
Figure 10 shows quasiclassical (top) and quantum (bottom) Figure 12, which were plotted using quantum data obtained with

differential cross sections for reactions leading to HB€ 0, Econ = 1.306 eV. These polar maps show the value of the DCS

j' = all) at Ecoy = 1.306 eV, considering selected combinations over a plane in which the polar angle represents the scattering

of values for$ and a. as well as reactions without reactant angle,0, whereas the radial distance to the center is a measure

polarization (labeled as “iso” in the picture). Given the level of of the product recoil energy (the larger the distance the larger

detail of the property being considered, the agreement betweerthe recoil energy and the smaller the internal energy of the

qguantum and QCT data is indeed remarkable, as is the varietyproducts; the outer ring correspondsuto= 0, j' = 0, andv'

of shapes one can obtain for the angular distributions by varying andj' increase toward the center). Previous observations are

the direction along which the reactant molecule is aligned (i.e., also visible in these plots: collinear collisions(Blignment

by selecting specific values fgr and o). alongp = 0°) lead to a pronounced enhancement of backward
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B = 0° and with = 90°, a. = 0°, respectively. However, with
increasing=con, the alignments that maximize and minimize the
special ICS tend to be those withequal to the magic angle
ando. = 180° anda. = 0°, respectively. This indicates that side-
on attack with the internuclear axis in the scattering plane can
lead to maximal as well as minimal values for the special ICS,
depending on the value of This azimuthal angle is thus shown
to be a very relevant stereodynamical parameter.

5.3. The Min-Max Approach: Theoretical Control Limits.

The results we have just presented show thap@larization,

and D, alignment in particular, can have a dramatic effect on
the outcome of the Ht+ D5 collision. By selecting specific
directions for the B alignment, we have obtained starkly
contrasting reactive cross sections as well as starkly contrasting
product state distributions.

The question that follows is this: is it possible to improve
on those results? Can one make the contrasts even starker? If
one wants to, say, increase or decrease the reactive cross
sections, how far can one go? This is where the min-max
approach steps in.

In other words, the question asked in the previous paragraph
was, “can one determine the (extrinsic) reactant polarization
moments that lead to minimal and maximal reactive cross
sections?” The answer is that this is not only possible, but
(theoretically at least) rather straightforward. All one has to do
is, having determined intrinsic PPs and PDDCSs, to apply
standard computational minimization/maximization techniéfues
using the cross section formulas. (In the most general case, these
are egs 8, 14, and 15. If the goal is to determine what is
achievable with the experimental setup described above, then
the required formulas are those of eqs4B.) We have done
that and have found that the calculations invariably converge
promptly.

Results from two such “min-max” calculations are shown in
Figures 8 and 13. In these two cases, we were interested in the

=1.306 eV and for different Palignment directions. The top and  determination of the direction of v = 0, ] = 2) alignment
bottom panel show the backward and forward scattering region, that would lead to the largest or smallest possible values for
respectively. The border between the white and gray areas representshe ICS (Figure 8) or for the special ICS (Figure 13).
the maximum possible values ofoﬁi’da). The minimum possible In the case of the ICSs of Figure 8, the only adjustable
values lie at the horizontal,of/do = 0 axis. The minimum and  parameter is the angf: see eq 43. Its determination has led to
?ezﬂ?b“en; Yﬁ'ggit‘i’;ﬁr% %bta'ned with the min-maximization procedure o minimal and maximal ICSs depicted in Figure 8 as the
- borders between the theoretically allowed (white) and theoreti-
scattering with regard to the isotropic case (nopblarization), cally forbidden (gray) regions fow . Figure 14 further
whereas side-on collisions (#5< g < 135) lead to an illustrates the results obtained, showing on its left panelsthe
enhancement of sideways scattering, with the shapes andvalues leading to minimal and maximal ICSs at the collision
magnitudes of the polar maps also depending on whether theenergies considered; note that because the azimuthal angle,
side-on collisions are coplanar or not. It also becomes clear from plays no role here (it is averaged out, as discussed in Sections
these representations that side-on collisions give rise to an2.8 and 4), one does not need to consjélerlues outside the
appreciable rotational excitation especially manifest in the 0 = 8 = 90° range.
sideways scattering. Figure 14 shows that thg values that maximizes # are
Another example of the effect of the,alignment on the invariably close to zero. This explains why the= 0° curve is
reactivity can be obtained as follows: suppose that we integrateinvariably at or very close to the upper limit of the allowed
each of the previous polar maps over the scattering angle andregion in Figure 8 and is further evidence that collineat-H
the recoil velocity. The resulting quantity, the special ICS, D, collisions lead to an increased reactivity, although we will
obviously depends on bohanda. Note that in this case the  have more to say about this in the next paragraph. As fofthe
position of the scattering plane is well defined with respect to values that minimizes #, they are invariably close t6 = 90°.
the direction of the polarization vector of the excitation laser This explains why th¢g = 90° curve is invariably at or very
despite the integration over the scattering an@lerhe results close to the lower limit of the allowed # region in Figure 8,
obtained as a function of the collision energy are representedand complements the maximization information, showing that
in Figure 13 for different combinations @gfandco. As will be side-on H+ D, collisions lead to a decreased reactivity.
explained in Section 5.3, the magnitude of the special ICS is  Min-maximization of the special ICS of Figure 13 involves
bound within the range indicated by the white area of the figure two adjustable parameter8 &nda) rather than only one, see
for a laboratory preparation ¢f = 2, m = 0[] At low collision eq 42. Their determination has led to the minimal and maximal
energies, the highest and lowest valueééhre obtained with special ICSs depicted in Figure 13 as the borders between the
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Figure 12. Quantum triple (angle-velocity) differential cross section of the-HD, reaction atEcoi = 1.306 eV and for different Palignment
directions.

theoretically allowed (white) and theoretically forbidden (gray) in which the By interatomic axis is tilted the “wrong” way (away
regions foro{i. Figure 14 again further illustrates the results from the incoming H atom rather than toward it) can lead to a
obtained, showing on its right panel theanda values leading similar reactivity reduction, in particular at the higher collision
to minimal and maximal special ICSs at the collision energies energies at which the “right” coplanar magic-angle collisions
considered. 5 lead to almost maximurﬁﬁ values.

Figure 14 shows that thé anda values that maximizé&, We close this section with three remarks about application
satisfy§ < 90°, o = 180: reactivity is enhanced by coplanar  of the min-max approach. The first is that, although the min-
collisions in which the B interatomic axis is tilted toward the  ,ax calculations we have reported on have been constrained
incoming H atom rather than away from it. It also shows that, (e scattering-frame extrinsic reactant polarization moments
¥vhen a more detailed analys(ljs |shcal;r|ed Ouﬁ: one finds that, as,yere ohtained by rotation of laboratory-frame moments, and
ar as react|V|ty. Is concemed, the best fo ISion Qeometfy 'S the values of these were fixed), they do not have to be limited
actually not collinear. Indeed, none of oif, maximizations i this way: the values of the extrinsic reactants polarization
hhave rI]ed o zero as thle optlmlgrlvalue. Instea?,ﬂwe have found ) onts thel¥ values, can be chosen freely. Unconstrained
that this optimum value steadily increases frém= 15° near . ’ : ’ S )
the rt_aaction threshol_d o~ 60° at the hi_ghest coIIis_ion energ_ie_s Q:g;rrﬂe%xo%ilgufr:?r\:vse ?lr:\/g(:czgn'f'CZ?ftgr::(;dri;rt]ha; ;%Z’e
conS|derqu. Atthe high colllspn energles,.the optimum collision (They can Iea'd to significantly lar ermaximal crossysections.
geometry is not even approximately collinear as suggested byand ¥o virtuall zerog| minimaI)/crogs sections.) Experimental
the o # values, but rather coplanar and approximately side-on. <" *© y A : P

verification of the unconstrained results, however, is currently

This explains why the¢g = 0° curve is close to the upper limit _ al’s !
unfeasible, although the situation may change when adaptive

of the allowed 6@ region in Figure 13 only at very low | . f th . db b d
collision energies and also why at higher collision energies it CONtrol experiments of the type pioneered by Gerber and co-
workerg® become able to deal with bimolecular collisions.

is coplanar magic-angle collisions that lead to special ICSs ] -
approaching their maximum possible values. As shown by  The second remark s that, although we have only discussed
Figure 13, selection of the azimuthal angle allows one to double min-max results for integral cross sections, the approach can

the system reactivity. also be applied to other reaction properties, for example,
As for the anda values that minimizé;ﬁ, they invariably differential cross sections and product state distributions.
indicate that side-on collisions in which the,Daxis is (Indeed, Figure 11 shows min-max results for a differential cross

perpendicular to the scattering plane are those that reducesection, the maximization results are shown as the border
reactivity the most. Consideration of Figure 13, however, leads between the theoretically allowed (white) and theoretically
to an interesting observation: coplanar magic-angle collisions forbidden (gray) regions, whereas the minimization results
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Figure 14. Values of the angles specifying the;® = 0, j = 2)
alignment directions leading to maximal or minimal ICSs and special
ICSs according to QM. The maximal and minimal ICSs are shown in
Figure 8, and the maximal and minimal special ICSs in Figure 13. In
either case, they appear in those figures as the borders between the
theoretically allowed (white) and theoretically forbidden (gray) regions.

Figure 13. Quantum special ICS as a function of thetHD, (v = 0,
j = 2) collision energy for different Palignment directions specified
by the values off and a.. The borders between the white and gray

areas represent the maximum and minimum possible valus"eé and . . . . .
were obtained with the min-maximization procedure described in @nd to be used in conjunction with both quantum reactive

Section 5.3. scattering and quasiclassical trajectory calculations.
In terms of understanding, two central aspects of the theory

(which have lead to a vanishing DCS for every scattering angle) presented here are (i) the formal distinction between and
lie along the horizontal,ajﬁ/dw = 0 axis.) separation of intrinsic and extrinsic reactant polarizations, and

The final remark is that, in general, the results from min- (i) the introduction of stereodynamical portraits. .
max calculations will be better represented by extrinsic stereo- 1N Separation of intrinsic reactant polarizations from their
dynamical portraits (or, equivalently, by a complete set of €Xtrinsic counterparts aI_Iows one to ar]alyze the collision
extrinsic polarization moments) than by a single direction along stereodynamlcs_ per se, W|thout_con5|de_rat|on_of external factors
which reactants are to be oriented or aligned. In the case of thethat, although indispensable in practical situations, can be
results presented above, the distinction was unnecessary becaudgstrictive with regard to analyses of reaction mechanisms. That
the calculations were done with the experimental setup describegdo€s not imply, however, that extrinsic polarizations and
in Section 4 in mind and thé anda. values uniquely determined practlc_al situations cannot be cons_ldered: they can, and have
the extrinsic reactants portraits and polarization moments, seeP€en, in a straightforward and flexible way.

Figure 1 and eq 40. However, this is not always the case; in .The mtroc}ugtmn of stgreodynamlcal portraits allows for a
unconstrained min-maximizations, for instance, this is certainly Visual description of reaction stereodynamics that, although not
not so. In general, it is comparison between the actual (extrinsic) €ontaining more information than the traditional one in terms
reactants polarization portraits and their intrinsic counterparts Of polarization moments only, conveys that information in what
that will allow one to obtain the full picture. We can use We thinkis a very informative and intuitively appealing way.
production of pure states as an example. If we are interestedTh€ need for such visual representations has long been
in, say, the DCS of reaction 48 Bo = 1.306 eV and) = 4°, recognized, at least since 1990, when Lefrietroduced the

we know what the result of an unconstrained maximization must concept of chemical shape of colliding molecules, but in our
be: the extrinsic reactants portraits must be identical to the OPinion the potential of the idea had not yet been fully realized.
intrinsic portraits shown in the top row of Figure 4. This is The reason was the lack of an exact way of graphically
because in the case of production of pure states it is possible to'€Presenting angular momentum distributions, a problem that
create a pure reactant polarization state that, in terms of thehas only been solved recentfy!” o _
metaphor introduced earlier, gives to the reaction exactly what N terms of experimental control possibilities, we think that
it wants. Considering the stereodynamical portraits in Figure the main contribution of this article is the description of an
4, one can see that they are not defined simply by a particular €periment that, although seriously challenging, should be
direction in space because their shapes can also change. To fu”)teasm_le with current technology. Successful conduction of_thls
understand the stereochemistry of a reactive collision, one musteXPeriment would allow for stringent tests of the theoretical
consider the full picture (directionsnd shapes of the spatial ~ Predictions.

distributions of molecular axes and rotational angular momenta) We have used quantum and quasiclassical results for the
rather than a single spatial direction. benchmark H+ D, reaction to illustrate how the theoretical

methods can be used and what can be achieved in the proposed

experiment. In so doing, we have found that larization,

and alignment in particular, has (theoretically at least) a large
Motivated by the possibility that such work might contribute influence on reaction cross sections and product state distribu-

to an increased understanding of molecular collisions and to ations.

better assessment of experimental control possibilities, we have Some of the results we have obtained reveal not only strong

presented a theoretical method and proposed an experiment fobut also surprising effects. A representative example in that

the study of the effect of the reactants polarization on the regard is the observation that, when the collision energy exceeds

dynamics of atorrdiatom collisions. 1 eV, the collision geometry that maximizes the cross section
The theoretical formalism was stated in general terms. This of the “collinearly constrained” H- D, reaction is actually not

allows it to deal with arbitrary reactant polarization schemes, collinear at all. Instead, it is side-on, with strong coplanarity

6. Conclusions
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requirements. Although the “right” type of coplanar side-on
collision leads to maximal reactivity, the “wrong” one takes 315

reactivity very close to its lowest possible value.
In the introduction to this paper, using the i HF system

J. Phys. Chem. A, Vol. 109, No. 28, 2006217

(22) Orr-Ewing, A. J.; Zare, R. NAnnu. Re. Phys. Chem1994 45,

(23) Zare, R. NAngular Momentum: Understanding Spatial Aspects
in Chemistry and Physic&Viley: New York, 1988.
(24) Greene, C. H.; Zare, R. Mnnu. Re. Phys. Chem1982 33, 119.

as an example, we have commented on how detailed studies of (25) Dixon, R. N.J. Chem. Phys1986 85, 1866.

the stereodynamics of molecular collisions often lead to
unexpected results. This has also proved to be the casefor H

(26) Barnwell, J. D.; Loeser, J. G.; Herschbach, D.JRPhys. Chem.
1983 87, 2781.
(27) Biedenharn, L. C.; Louck, J. DAngular Momentum in Quantum

D, by far the most studied and best understood of all elementaryPhysics: Theory and Applicatipiddison-Wesley: Reading, MA, 1981.

reactions. This shows that much remains to be done if we are
to thoroughly understand the influence of stereochemical factors

(28) Biedenharn, L. C. ilNuclear Spectroscopy, Part; B\zjenberg-
Selove, F., Ed.; Academic: New York, 1960.
(29) Fano, U.; Racah, Grreducible Tensorial SefsAcademic: New

on the reactivity of such systems. More research is necessaryyork, 1959.

and we hope the results reported here will help motivate
experimentalists and theoreticians alike to further work on this

beautiful and intriguing problem.
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